Unknown

Dataset Information

0

Insect-Active Toxins with Promiscuous Pharmacology from the African Theraphosid Spider Monocentropus balfouri.


ABSTRACT: Many chemical insecticides are becoming less efficacious due to rising resistance in pest species, which has created much interest in the development of new, eco-friendly bioinsecticides. Since insects are the primary prey of most spiders, their venoms are a rich source of insect-active peptides that can be used as leads for new bioinsecticides or as tools to study molecular receptors that are insecticidal targets. In the present study, we isolated two insecticidal peptides, µ/?-TRTX-Mb1a and -Mb1b, from venom of the African tarantula Monocentropus balfouri. Recombinant µ/?-TRTX-Mb1a and -Mb1b paralyzed both Lucilia cuprina (Australian sheep blowfly) and Musca domestica (housefly), but neither peptide affected larvae of Helicoverpa armigera (cotton bollworms). Both peptides inhibited currents mediated by voltage-gated sodium (NaV) and calcium channels in Periplaneta americana (American cockroach) dorsal unpaired median neurons, and they also inhibited the cloned Blattella germanica (German cockroach) NaV channel (BgNaV1). An additional effect seen only with Mb1a on BgNaV1 was a delay in fast inactivation. Comparison of the NaV channel sequences of the tested insect species revealed that variations in the S1-S2 loops in the voltage sensor domains might underlie the differences in activity between different phyla.

SUBMITTER: Smith JJ 

PROVIDER: S-EPMC5450703 | biostudies-literature | 2017 May

REPOSITORIES: biostudies-literature

altmetric image

Publications

Insect-Active Toxins with Promiscuous Pharmacology from the African Theraphosid Spider Monocentropus balfouri.

Smith Jennifer J JJ   Herzig Volker V   Ikonomopoulou Maria P MP   Dziemborowicz Sławomir S   Bosmans Frank F   Bosmans Frank F   Nicholson Graham M GM   King Glenn F GF  

Toxins 20170505 5


Many chemical insecticides are becoming less efficacious due to rising resistance in pest species, which has created much interest in the development of new, eco-friendly bioinsecticides. Since insects are the primary prey of most spiders, their venoms are a rich source of insect-active peptides that can be used as leads for new bioinsecticides or as tools to study molecular receptors that are insecticidal targets. In the present study, we isolated two insecticidal peptides, µ/ω-TRTX-Mb1a and -M  ...[more]

Similar Datasets

| S-EPMC5881108 | biostudies-literature
| S-EPMC3862797 | biostudies-literature
| S-EPMC8740163 | biostudies-literature
| S-EPMC2881780 | biostudies-literature
| PRJEB15661 | ENA
| S-EPMC5408190 | biostudies-literature
| S-EPMC2847040 | biostudies-literature
| PRJNA518022 | ENA
| S-EPMC5206677 | biostudies-literature
| S-EPMC3202818 | biostudies-literature