Ontology highlight
ABSTRACT: Background
Uncertainty regarding comorbid illness, and ability to tolerate aggressive therapy has led to minimal enrollment of elderly cancer patients into clinical trials and often substandard treatment. Increasingly, comorbid illness scales have proven useful in identifying subgroups of elderly patients who are more likely to tolerate and benefit from aggressive therapy. Unfortunately, the use of such scales has yet to be widely integrated into either clinical practice or clinical trials research.Methods
This article reviews evidence for the validity of the Charlson Comorbidity Index (CCI) in oncology and provides a Microsoft Excel (MS Excel) Macro for the rapid and accurate calculation of CCI score. The interaction of comorbidity and malignant disease and the validation of the Charlson Index in oncology are discussed.Results
The CCI score is based on one year mortality data from internal medicine patients admitted to an inpatient setting and is the most widely used comorbidity index in oncology. An MS Excel Macro file was constructed for calculating the CCI score using Microsoft Visual Basic. The Macro is provided for download and dissemination. The CCI has been widely used and validated throughout the oncology literature and has demonstrated utility for most major cancers. The MS Excel CCI Macro provides a rapid method for calculating CCI score with or without age adjustments. The calculator removes difficulty in score calculation as a limitation for integration of the CCI into clinical research. The simple nature of the MS Excel CCI Macro and the CCI itself makes it ideal for integration into emerging electronic medical records systems.Conclusions
The increasing elderly population and concurrent increase in oncologic disease has made understanding the interaction between age and comorbid illness on life expectancy increasingly important. The MS Excel CCI Macro provides a means of increasing the use of the CCI scale in clinical research with the ultimate goal of improving determination of optimal treatments for elderly cancer patients.
SUBMITTER: Hall WH
PROVIDER: S-EPMC545968 | biostudies-literature |
REPOSITORIES: biostudies-literature