Unknown

Dataset Information

0

Regulated membrane remodeling by Mic60 controls formation of mitochondrial crista junctions.


ABSTRACT: The mitochondrial contact site and cristae organizing system (MICOS) is crucial for the formation of crista junctions and mitochondrial inner membrane architecture. MICOS contains two core components. Mic10 shows membrane-bending activity, whereas Mic60 (mitofilin) forms contact sites between inner and outer membranes. Here we report that Mic60 deforms liposomes into thin membrane tubules and thus displays membrane-shaping activity. We identify a membrane-binding site in the soluble intermembrane space-exposed part of Mic60. This membrane-binding site is formed by a predicted amphipathic helix between the conserved coiled-coil and mitofilin domains. The mitofilin domain negatively regulates the membrane-shaping activity of Mic60. Binding of Mic19 to the mitofilin domain modulates this activity. Membrane binding and shaping by the conserved Mic60-Mic19 complex is crucial for crista junction formation, mitochondrial membrane architecture and efficient respiratory activity. Mic60 thus plays a dual role by shaping inner membrane crista junctions and forming contact sites with the outer membrane.

SUBMITTER: Hessenberger M 

PROVIDER: S-EPMC5460017 | biostudies-literature | 2017 May

REPOSITORIES: biostudies-literature

altmetric image

Publications

Regulated membrane remodeling by Mic60 controls formation of mitochondrial crista junctions.

Hessenberger Manuel M   Zerbes Ralf M RM   Rampelt Heike H   Kunz Séverine S   Xavier Audrey H AH   Purfürst Bettina B   Lilie Hauke H   Pfanner Nikolaus N   van der Laan Martin M   Daumke Oliver O  

Nature communications 20170531


The mitochondrial contact site and cristae organizing system (MICOS) is crucial for the formation of crista junctions and mitochondrial inner membrane architecture. MICOS contains two core components. Mic10 shows membrane-bending activity, whereas Mic60 (mitofilin) forms contact sites between inner and outer membranes. Here we report that Mic60 deforms liposomes into thin membrane tubules and thus displays membrane-shaping activity. We identify a membrane-binding site in the soluble intermembran  ...[more]

Similar Datasets

| S-EPMC5683758 | biostudies-literature
| S-EPMC4332397 | biostudies-literature
| S-EPMC4968808 | biostudies-literature
| S-EPMC7603527 | biostudies-literature
| S-EPMC4282050 | biostudies-literature