Unknown

Dataset Information

0

Metabolic network analysis reveals microbial community interactions in anammox granules.


ABSTRACT: Microbial communities mediating anaerobic ammonium oxidation (anammox) represent one of the most energy-efficient environmental biotechnologies for nitrogen removal from wastewater. However, little is known about the functional role heterotrophic bacteria play in anammox granules. Here, we use genome-centric metagenomics to recover 17 draft genomes of anammox and heterotrophic bacteria from a laboratory-scale anammox bioreactor. We combine metabolic network reconstruction with metatranscriptomics to examine the gene expression of anammox and heterotrophic bacteria and to identify their potential interactions. We find that Chlorobi-affiliated bacteria may be highly active protein degraders, catabolizing extracellular peptides while recycling nitrate to nitrite. Other heterotrophs may also contribute to scavenging of detritus and peptides produced by anammox bacteria, and potentially use alternative electron donors, such as H2, acetate and formate. Our findings improve the understanding of metabolic activities and interactions between anammox and heterotrophic bacteria and offer the first transcriptional insights on ecosystem function in anammox granules.

SUBMITTER: Lawson CE 

PROVIDER: S-EPMC5460018 | biostudies-literature | 2017 May

REPOSITORIES: biostudies-literature

altmetric image

Publications

Metabolic network analysis reveals microbial community interactions in anammox granules.

Lawson Christopher E CE   Wu Sha S   Bhattacharjee Ananda S AS   Hamilton Joshua J JJ   McMahon Katherine D KD   Goel Ramesh R   Noguera Daniel R DR  

Nature communications 20170531


Microbial communities mediating anaerobic ammonium oxidation (anammox) represent one of the most energy-efficient environmental biotechnologies for nitrogen removal from wastewater. However, little is known about the functional role heterotrophic bacteria play in anammox granules. Here, we use genome-centric metagenomics to recover 17 draft genomes of anammox and heterotrophic bacteria from a laboratory-scale anammox bioreactor. We combine metabolic network reconstruction with metatranscriptomic  ...[more]

Similar Datasets

| S-EPMC5646403 | biostudies-literature
2011-09-17 | GSE32159 | GEO
| S-EPMC3482989 | biostudies-literature
| S-EPMC6502876 | biostudies-literature
| S-EPMC8642522 | biostudies-literature
| S-EPMC5132105 | biostudies-literature
| S-EPMC4821891 | biostudies-literature
| S-EPMC9565075 | biostudies-literature
| S-EPMC5344373 | biostudies-literature
| S-EPMC7418181 | biostudies-literature