Photo-acoustic spectroscopy revealing resonant absorption of self-assembled GaAs-based nanowires.
Ontology highlight
ABSTRACT: III-V semiconductors nanowires (NW) have recently attracted a significant interest for their potential application in the development of high efficiency, highly-integrated photonic devices and in particular for the possibility to integrate direct bandgap materials with silicon-based devices. Here we report the absorbance properties of GaAs-AlGaAs-GaAs core-shell-supershell NWs using photo-acoustic spectroscopy (PAS) measurements in the spectral range from 300?nm to 1100?nm wavelengths. The NWs were fabricated by self-catalyzed growth on Si substrates and their dimensions (length ~5??m, diameter ~140-150?nm) allow for the coupling of the incident light to the guided modes in near-infrared (IR) part of the spectrum. This coupling results in resonant absorption peaks in the visible and near IR clearly evidenced by PAS. The analysis reveal broadening of the resonant absorption peaks arising from the NW size distribution and the interaction with other NWs. The results show that the PAS technique, directly providing scattering independent absorption spectra, is a very useful tool for the characterization and investigation of vertical NWs as well as for the design of NW ensembles for photonic applications, such as Si-integrated light sources, solar cells, and wavelength dependent photodetectors.
SUBMITTER: Leahu G
PROVIDER: S-EPMC5460253 | biostudies-literature | 2017 Jun
REPOSITORIES: biostudies-literature
ACCESS DATA