Unknown

Dataset Information

0

Melatonin exerts anti-oral cancer effect via suppressing LSD1 in patient-derived tumor xenograft models.


ABSTRACT: Aberrant activation of histone lysine-specific demethylase (LSD1) increases tumorigenicity; hence, LSD1 is considered a therapeutic target for various human cancers. Although melatonin, an endogenously produced molecule, may defend against various cancers, the precise mechanism involved in its anti-oral cancer effect remains unclear. Patient-derived tumor xenograft (PDTX) models are preclinical models that can more accurately reflect human tumor biology compared with cell line xenograft models. Here, we evaluated the anticancer activity of melatonin by using LSD1-overexpressing oral cancer PDTX models. By assessing oral squamous cell carcinoma (OSCC) tissue arrays through immunohistochemistry, we examined whether aberrant LSD1 overexpression in OSCC is associated with poor prognosis. We also evaluated the action mechanism of melatonin against OSCC with lymphatic metastases by using the PDTX models. Our results indicated that melatonin, at pharmacological concentrations, significantly suppresses cell proliferation in a dose- and time-dependent manner. The observed suppression of proliferation was accompanied by the melatonin-mediated inhibition of LSD1 in oral cancer PDTXs and oral cancer cell lines. In conclusion, we determined that the beneficial effects of melatonin in reducing oral cancer cell proliferation are associated with reduced LSD1 expression in vivo and in vitro.

SUBMITTER: Yang CY 

PROVIDER: S-EPMC5464909 | biostudies-literature | 2017 May

REPOSITORIES: biostudies-literature

altmetric image

Publications

Melatonin exerts anti-oral cancer effect via suppressing LSD1 in patient-derived tumor xenograft models.

Yang Cheng-Yu CY   Lin Chih-Kung CK   Tsao Chang-Huei CH   Hsieh Cheng-Chih CC   Lin Gu-Jiun GJ   Ma Kuo-Hsing KH   Shieh Yi-Shing YS   Sytwu Huey-Kang HK   Chen Yuan-Wu YW  

Oncotarget 20170501 20


Aberrant activation of histone lysine-specific demethylase (LSD1) increases tumorigenicity; hence, LSD1 is considered a therapeutic target for various human cancers. Although melatonin, an endogenously produced molecule, may defend against various cancers, the precise mechanism involved in its anti-oral cancer effect remains unclear. Patient-derived tumor xenograft (PDTX) models are preclinical models that can more accurately reflect human tumor biology compared with cell line xenograft models.  ...[more]

Similar Datasets

| S-EPMC4433556 | biostudies-literature
| S-EPMC5976479 | biostudies-literature
| S-EPMC7550977 | biostudies-literature
| S-EPMC5738926 | biostudies-literature
| S-EPMC7073296 | biostudies-literature
| S-EPMC8751371 | biostudies-literature
| S-EPMC10097874 | biostudies-literature
| S-EPMC4167608 | biostudies-literature
| S-EPMC7522377 | biostudies-literature
| S-EPMC7061742 | biostudies-literature