Project description:This review provides a comprehensive overview of the past 25+ years of research into the development of left ventricular assist device (LVAD) to improve clinical outcomes in patients with severe end-stage heart failure and basic insights gained into the biology of heart failure gleaned from studies of hearts and myocardium of patients undergoing LVAD support. Clinical aspects of contemporary LVAD therapy, including evolving device technology, overall mortality, and complications, are reviewed. We explain the hemodynamic effects of LVAD support and how these lead to ventricular unloading. This includes a detailed review of the structural, cellular, and molecular aspects of LVAD-associated reverse remodeling. Synergisms between LVAD support and medical therapies for heart failure related to reverse remodeling, remission, and recovery are discussed within the context of both clinical outcomes and fundamental effects on myocardial biology. The incidence, clinical implications and factors most likely to be associated with improved ventricular function and remission of the heart failure are reviewed. Finally, we discuss recognized impediments to achieving myocardial recovery in the vast majority of LVAD-supported hearts and their implications for future research aimed at improving the overall rates of recovery.
Project description:BackgroundData on relative safety, efficacy, and role of different percutaneous left ventricular assist devices for hemodynamic support during the ventricular tachycardia (VT) ablation procedure are limited.Methods and resultsWe performed a multicenter, observational study from a prospective registry including all consecutive patients (N=66) undergoing VT ablation with a percutaneous left ventricular assist devices in 6 centers in the United States. Patients with intra-aortic balloon pump (IABP group; N=22) were compared with patients with either an Impella or a TandemHeart device (non-IABP group; N=44). There were no significant differences in the baseline characteristics between both the groups. In non-IABP group (1) more patients could undergo entrainment/activation mapping (82% versus 59%; P=0.046), (2) more number of unstable VTs could be mapped and ablated per patient (1.05±0.78 versus 0.32±0.48; P<0.001), (3) more number of VTs could be terminated by ablation (1.59±1.0 versus 0.91±0.81; P=0.007), and (4) fewer VTs were terminated with rescue shocks (1.9±2.2 versus 3.0±1.5; P=0.049) when compared with IABP group. Complications of the procedure trended to be more in the non-IABP group when compared with those in the IABP group (32% versus 14%; P=0.143). Intermediate term outcomes (mortality and VT recurrence) during 12±5-month follow-up were not different between both groups. Left ventricular ejection fraction ≤15% was a strong and independent predictor of in-hospital mortality (53% versus 4%; P<0.001).ConclusionsImpella and TandemHeart use in VT ablation facilitates extensive activation mapping of several unstable VTs and requires fewer rescue shocks during the procedure when compared with using IABP.
Project description:Iron deficiency is a common and independent predictor of adverse outcomes in patients with heart failure. The implications of iron deficiency in patients implanted with a left ventricular assist device (LVAD) are less established. This review recaps data on the prevalence, characteristics and impact of Iron deficiency in the LVAD population. A systematic search yielded eight studies involving 517 LVAD patients, with iron deficiency prevalence ranging from 40% to 82%. IV iron repletion was not associated with adverse events and effectively resolved iron deficiency in most patients. However, the effects of iron deficiency and iron repletion on post-implant survival and exercise capacity remain unknown. Although iron deficiency is highly prevalent in LVAD patients, its true prevalence and adverse effects may be misestimated due to inexact diagnostic criteria. Future randomised controlled trials on IV iron treatment in LVAD patients are warranted to clarify the significance of this common comorbidity.
Project description:The left ventricular assist device (LVAD) is often used in the treatment of heart failure. However, 4% to 9% implanted LVAD will have thrombosis problem in one year, which is fatal to the patient's life. In this work, an interventional sonothrombolysis (IST) method is developed to realize the thrombolysis on LVAD. A pair of ultrasound transducer rings is installed on the shell of LVAD, and drug-loaded microbubbles are injected into the LVAD through the interventional method. The microbubbles are adhere on the thrombus with the coated thrombus-targeted drugs, and the thrombolytic drugs carried by the bubbles are brought into the thrombus by the cavitation of bubbles under the ultrasound. In a proof-of-concept experiment in a live sheep model, the thrombus on LVAD is dissolved in 30 min, without damages on LVADs and organs. This IST exhibits to be more efficient and safer compared with other thrombolysis methods on LVAD.
Project description:Left ventricular assist devices (LVAD) have revolutionized the management of advanced heart failure. However, complications rates remain high, among which hemorrhagic and thrombotic complications are the most important. Antiplatelet and anticoagulation strategies form a cornerstone of LVAD management and may directly affect LVAD complications. Concurrently, LVAD complications influence anticoagulation and anticoagulation management. A thorough understanding of device, patient, and management, including anticoagulation and antiplatelet therapies, are important in optimizing LVAD outcomes. This article provides a comprehensive state of the art review of issues related to antiplatelet and anticoagulation management in LVADs. We start with a historical overview, the epidemiology and pathophysiology of bleeding and thrombotic complications in LVADs. We then discuss platelet and anticoagulation biology followed by considerations prior to, during, and after LVAD implantation. This is followed by discussion of anticoagulation and the management of thrombotic and hemorrhagic complications. Specific problems, including management of heparin-induced thrombocytopenia, anticoagulant reversal, novel oral anticoagulants, artificial heart valves, and noncardiac surgeries are covered in detail.
Project description:ABSTRACTAdvanced Heart Failure (AHF) is a complex syndrome that affects the physiology of the heart to maintain efficient blood circulation resulting in multiorgan failure and, eventually, death. Left Ventricular Assist Devices (LVADs) have become the cornerstone therapy for AHF patients, both as a bridge to transplantation and as a decisive therapy. Recently the results of the MOMENTUM 3 Trial were published. The trial compared HeartMate 3 LVAD with HeartMate II LVAD in a randomized trial in The Multicenter Study of MagLev Technology in Patients Undergoing Mechanical Circulatory Support Therapy with HeartMate 3 (MOMENTUM 3). Of 366 patients, 190 were assigned to the centrifugal-flow pump group (HeartMate 3) and 176 to the axial-flow (HeartMate II) pump group. In the intention-to-treat population, the primary end point occurred in 151 patients (79.5%) in the centrifugal-flow pump group, as compared with 106 (60.2%) in the axial-flow pump group (P < 0.001 for noninferiority). Reoperation for pump malfunction was less frequent in the centrifugal-flow pump group than in the axial-flow pump group (P < 0.001).The results of the MOMENTUM 3 Trial are a big achievement in the cardiovascular world. Any improvement in LVADs that reduces the risk of stroke, perhaps the most feared complication of these devices, would be meaningful. Besides, given the observed lower rate of pump thrombosis and reoperation for pump malfunction, it already seems likely that the HeartMate 3 will supplant the HeartMate II in clinical practice. In addition, the risks that are associated with reoperation undoubtedly counterbalanced any unintentional bias in performing that intervention.
Project description:Mechanical circulatory support has emerged as an important therapy for advanced heart failure, with more than 18,000 continuous flow devices implanted worldwide to date. These devices significantly improve survival and quality of life and should be considered in every patient with end-stage heart failure with reduced ejection fraction who has no other life-limiting diseases. All candidates for device implantation should undergo a thorough evaluation in order to identify those who could benefit from device implantation. Long-term management of ventricular assist device patients is challenging and requires knowledge of the characteristic complications with their unique clinical presentations.
Project description:Driveline infections (DLI) are common adverse events in left ventricular assist devices (LVADs), leading to severe complications and readmissions. The study aims to characterize risk factors for DLI readmission 2 years postimplant. This single-center study included 183 LVAD patients (43 HeartMate II [HMII], 29 HeartMate 3 [HM3], 111 HVAD) following hospital discharge between 2013 and 2017. Demographics, clinical parameters, and outcomes were retrospectively analyzed and 12.6% of patients were readmitted for DLI, 14.8% experienced DLI but were treated in the outpatient setting, and 72.7% had no DLI. Mean C-reactive protein (CRP), leukocytes and fibrinogen were higher in patients with DLI readmission (P < .02) than in outpatient DLI and patients without DLI, as early as 60 days before readmission. Freedom from DLI readmission was comparable for HMII and HVAD (98% vs. 87%; HR, 4.52; 95% CI, 0.58-35.02; P = .15) but significantly lower for HM3 (72%; HR, 10.82; 95% CI, 1.26-92.68; P = .03). DLI (HR, 1.001; 95% CI, 0.999-1.002; P = .16) or device type had no effect on mortality. DLI readmission remains a serious problem following LVAD implantation, where CRP, leukocytes, and fibrinogen might serve as risk factors already 60 days before. HM3 patients had a higher risk for DLI readmissions compared to HVAD or HMII, possibly because of device-specific driveline differences.
Project description:Durable implantable left ventricular assist devices (LVADs) have been shown to improve survival and quality of life for patients with stage D heart failure. Even though LVADs remain underused overall, the number of patients with heart failure supported with LVADs is steadily increasing. Therefore, general cardiologists will increasingly encounter these patients. In this review, we provide an overview of the field of durable LVADs. We discuss which patients should be referred for consideration of advanced heart failure therapies. We summarize the basic principles of LVAD care, including medical and surgical considerations. We also discuss the common complications associated with LVAD therapy, including bleeding, infections, thrombotic issues, and neurologic events. Our goal is to provide a primer for the general cardiologist in the recognition of patients who could benefit from LVADs and in the principles of managing patients with LVAD. Our hope is to "demystify" LVADs for the general cardiologist.
Project description:Aortic, mitral and tricuspid valve regurgitation are commonly encountered in patients with continuous-flow left ventricular assist devices (CF-LVADs). These valvular heart conditions either develop prior to CF-LVAD implantation or are induced by the pump itself. They can all have significant detrimental effects on patients' survival and quality of life. With the improved durability of CF-LVADs and the overall rise in their volume of implants, an increasing number of patients will likely require a valvular heart intervention at some point during CF-LVAD therapy. However, these patients are often considered poor reoperative candidates. In this context, percutaneous approaches have emerged as an attractive "off-label" option for this patient population. Recent data show promising results, with high device success rates and rapid symptomatic improvements. However, the occurrence of distinct complications such as device migration, valve thrombosis or hemolysis remain of concern. In this review, we will present the pathophysiology of valvular heart disease in the setting of CF-LVAD support to help us understand the underlying rationale of these potential complications. We will then outline the current recommendations for the management of valvular heart disease in patients with CF-LVAD and discuss their limitations. Lastly, we will summarize the evidence related to transcatheter heart valve interventions in this patient population.