Unknown

Dataset Information

0

Estimating fish abundance at spawning aggregations from courtship sound levels.


ABSTRACT: Sound produced by fish spawning aggregations (FSAs) permits the use of passive acoustic methods to identify the timing and location of spawning. However, difficulties in relating sound levels to abundance have impeded the use of passive acoustics to conduct quantitative assessments of biomass. Here we show that models of measured fish sound production versus independently measured fish density can be generated to estimate abundance and biomass from sound levels at FSAs. We compared sound levels produced by spawning Gulf Corvina (Cynoscion othonopterus) with simultaneous measurements of density from active acoustic surveys in the Colorado River Delta, Mexico. During the formation of FSAs, we estimated peak abundance at 1.53 to 1.55 million fish, which equated to a biomass of 2,133 to 2,145 metric tons. Sound levels ranged from 0.02 to 12,738 Pa2, with larger measurements observed on outgoing tides. The relationship between sound levels and densities was variable across the duration of surveys but stabilized during the peak spawning period after high tide to produce a linear relationship. Our results support the use of active acoustic methods to estimate density, abundance, and biomass of fish at FSAs; using appropriately scaled empirical relationships, sound levels can be used to infer these estimates.

SUBMITTER: Rowell TJ 

PROVIDER: S-EPMC5469787 | biostudies-literature | 2017 Jun

REPOSITORIES: biostudies-literature

altmetric image

Publications

Estimating fish abundance at spawning aggregations from courtship sound levels.

Rowell Timothy J TJ   Demer David A DA   Aburto-Oropeza Octavio O   Cota-Nieto Juan José JJ   Hyde John R JR   Erisman Brad E BE  

Scientific reports 20170613 1


Sound produced by fish spawning aggregations (FSAs) permits the use of passive acoustic methods to identify the timing and location of spawning. However, difficulties in relating sound levels to abundance have impeded the use of passive acoustics to conduct quantitative assessments of biomass. Here we show that models of measured fish sound production versus independently measured fish density can be generated to estimate abundance and biomass from sound levels at FSAs. We compared sound levels  ...[more]

Similar Datasets

| S-EPMC10170206 | biostudies-literature
| S-EPMC5981459 | biostudies-literature
| S-EPMC4137664 | biostudies-literature
| S-EPMC5746542 | biostudies-literature
| S-EPMC4477890 | biostudies-literature
| S-EPMC7193739 | biostudies-literature
| S-EPMC6713441 | biostudies-literature
| S-EPMC7094847 | biostudies-literature
| S-EPMC6342187 | biostudies-literature
| S-EPMC10710171 | biostudies-literature