Unknown

Dataset Information

0

On-the-Fly ab Initio Semiclassical Calculation of Glycine Vibrational Spectrum.


ABSTRACT: We present an on-the-fly ab initio semiclassical study of vibrational energy levels of glycine, calculated by Fourier transform of the wavepacket correlation function. It is based on a multiple coherent states approach integrated with monodromy matrix regularization for chaotic dynamics. All four lowest-energy glycine conformers are investigated by means of single-trajectory semiclassical spectra obtained upon classical evolution of on-the-fly trajectories with harmonic zero-point energy. For the most stable conformer I, direct dynamics trajectories are also run for each vibrational mode with energy equal to the first harmonic excitation. An analysis of trajectories evolved up to 50?000 atomic time units demonstrates that, in this time span, conformers II and III can be considered as isolated species, while conformers I and IV show a pretty facile interconversion. Therefore, previous perturbative studies based on the assumption of isolated conformers are often reliable but might be not completely appropriate in the case of conformer IV and conformer I for which interconversion occurs promptly.

SUBMITTER: Gabas F 

PROVIDER: S-EPMC5472367 | biostudies-literature | 2017 Jun

REPOSITORIES: biostudies-literature

altmetric image

Publications

On-the-Fly ab Initio Semiclassical Calculation of Glycine Vibrational Spectrum.

Gabas Fabio F   Conte Riccardo R   Ceotto Michele M  

Journal of chemical theory and computation 20170526 6


We present an on-the-fly ab initio semiclassical study of vibrational energy levels of glycine, calculated by Fourier transform of the wavepacket correlation function. It is based on a multiple coherent states approach integrated with monodromy matrix regularization for chaotic dynamics. All four lowest-energy glycine conformers are investigated by means of single-trajectory semiclassical spectra obtained upon classical evolution of on-the-fly trajectories with harmonic zero-point energy. For th  ...[more]

Similar Datasets

| S-EPMC6240492 | biostudies-literature
| S-EPMC4834608 | biostudies-literature
| S-EPMC6337435 | biostudies-literature
| S-EPMC7901649 | biostudies-literature
| S-EPMC8693175 | biostudies-literature
| S-EPMC6939064 | biostudies-literature
| S-EPMC3625239 | biostudies-other
| S-EPMC3036545 | biostudies-other
| S-EPMC4978747 | biostudies-literature