Genotypic characterization of the DNA polymerase and sensitivity to antiviral compounds of foscarnet-resistant herpes simplex virus type 1 (HSV-1) derived from a foscarnet-sensitive HSV-1 strain.
Ontology highlight
ABSTRACT: Foscarnet is widely used for the treatment of acyclovir-resistant herpesvirus infections, and foscarnet-resistant herpesvirus infections are a serious concern in immunocompromised patients. Twenty-seven single-plaque isolates of herpes simplex virus type 1 (HSV-1) resistant to foscarnet were selected from foscarnet- and acyclovir-sensitive HSV-1 strain TAS by exposure to foscarnet, and the DNA polymerase genes were analyzed. The sensitivities of these mutants to foscarnet, cidofovir, S2242, acyclovir, ganciclovir, and penciclovir were determined. A single amino acid substitution, double amino acid substitutions, and a combination of a single amino acid substitution with a deletion or insertion of amino acid residues in the viral DNA polymerase were demonstrated in 21, 4, and 2 isolates, respectively. Of the 27 isolates, an amino acid substitution of serine for asparagine at amino acid position 724 in the DNA polymerase (724 S-N) was detected in 8 isolates. An amino acid substitution in conserved region II was demonstrated in these eight isolates as well as four other isolates. The mutation in the DNA polymerase responsible for resistance to foscarnet was located between the pre-IV region and conserved region V, especially within conserved region II. All the isolates were sensitive or hypersensitive to cidofovir and ganciclovir. Seven, 5, and 15 of the 27 isolates were also sensitive to S2242, acyclovir, and penciclovir, respectively. Thus, most of the foscarnet-resistant HSV-1 isolates were sensitive or hypersensitive to cidofovir and ganciclovir.
SUBMITTER: Saijo M
PROVIDER: S-EPMC547286 | biostudies-literature | 2005 Feb
REPOSITORIES: biostudies-literature
ACCESS DATA