Unknown

Dataset Information

0

Dual nature of pseudouridylation in U2 snRNA: Pus1p-dependent and Pus1p-independent activities in yeasts and higher eukaryotes.


ABSTRACT: The pseudouridine at position 43 in vertebrate U2 snRNA is one of the most conserved post-transcriptional modifications of spliceosomal snRNAs; the equivalent position is pseudouridylated in U2 snRNAs in different phyla including fungi, insects, and worms. Pseudouridine synthase Pus1p acts alone on U2 snRNA to form this pseudouridine in yeast Saccharomyces cerevisiae and mouse. Furthermore, in S. cerevisiae, Pus1p is the only pseudouridine synthase for this position. Using an in vivo yeast cell system, we tested enzymatic activity of Pus1p from the fission yeast Schizosaccharomyces pombe, the worm Caenorhabditis elegans, the fruit fly Drosophila melanogaster, and the frog Xenopus tropicalis We demonstrated that Pus1p from C. elegans has no enzymatic activity on U2 snRNA when expressed in yeast cells, whereas in similar experiments, position 44 in yeast U2 snRNA (equivalent to position 43 in vertebrates) is a genuine substrate for Pus1p from S. cerevisiae, S. pombe, Drosophila, Xenopus, and mouse. However, when we analyzed U2 snRNAs from Pus1 knockout mice and the pus1? S. pombe strain, we could not detect any changes in their modification patterns when compared to wild-type U2 snRNAs. In S. pombe, we found a novel box H/ACA RNA encoded downstream from the RPC10 gene and experimentally verified its guide RNA activity for positioning ?43 and ?44 in U2 snRNA. In vertebrates, we showed that SCARNA8 (also known as U92 scaRNA) is a guide for U2-?43 in addition to its previously established targets U2-?34/?44.

SUBMITTER: Deryusheva S 

PROVIDER: S-EPMC5473140 | biostudies-literature | 2017 Jul

REPOSITORIES: biostudies-literature

altmetric image

Publications

Dual nature of pseudouridylation in U2 snRNA: Pus1p-dependent and Pus1p-independent activities in yeasts and higher eukaryotes.

Deryusheva Svetlana S   Gall Joseph G JG  

RNA (New York, N.Y.) 20170421 7


The pseudouridine at position 43 in vertebrate U2 snRNA is one of the most conserved post-transcriptional modifications of spliceosomal snRNAs; the equivalent position is pseudouridylated in U2 snRNAs in different phyla including fungi, insects, and worms. Pseudouridine synthase Pus1p acts alone on U2 snRNA to form this pseudouridine in yeast <i>Saccharomyces cerevisiae</i> and mouse. Furthermore, in <i>S. cerevisiae</i>, Pus1p is the only pseudouridine synthase for this position. Using an in vi  ...[more]

Similar Datasets

| S-EPMC1173158 | biostudies-literature
| S-EPMC1802618 | biostudies-literature
| S-EPMC5805610 | biostudies-other
| S-EPMC3312555 | biostudies-literature
| S-EPMC4712673 | biostudies-literature
| S-EPMC2196410 | biostudies-literature
| S-EPMC1553196 | biostudies-literature
2023-09-08 | E-MTAB-13248 | biostudies-arrayexpress
| S-EPMC2442566 | biostudies-literature
| S-EPMC2715230 | biostudies-literature