Unknown

Dataset Information

0

Whole-Genome Sequencing Coupled to Imputation Discovers Genetic Signals for Anthropometric Traits.


ABSTRACT: Deep sequence-based imputation can enhance the discovery power of genome-wide association studies by assessing previously unexplored variation across the common- and low-frequency spectra. We applied a hybrid whole-genome sequencing (WGS) and deep imputation approach to examine the broader allelic architecture of 12 anthropometric traits associated with height, body mass, and fat distribution in up to 267,616 individuals. We report 106 genome-wide significant signals that have not been previously identified, including 9 low-frequency variants pointing to functional candidates. Of the 106 signals, 6 are in genomic regions that have not been implicated with related traits before, 28 are independent signals at previously reported regions, and 72 represent previously reported signals for a different anthropometric trait. 71% of signals reside within genes and fine mapping resolves 23 signals to one or two likely causal variants. We confirm genetic overlap between human monogenic and polygenic anthropometric traits and find signal enrichment in cis expression QTLs in relevant tissues. Our results highlight the potential of WGS strategies to enhance biologically relevant discoveries across the frequency spectrum.

SUBMITTER: Tachmazidou I 

PROVIDER: S-EPMC5473732 | biostudies-literature | 2017 Jun

REPOSITORIES: biostudies-literature

altmetric image

Publications

Whole-Genome Sequencing Coupled to Imputation Discovers Genetic Signals for Anthropometric Traits.

Tachmazidou Ioanna I   Süveges Dániel D   Min Josine L JL   Ritchie Graham R S GRS   Steinberg Julia J   Walter Klaudia K   Iotchkova Valentina V   Schwartzentruber Jeremy J   Huang Jie J   Memari Yasin Y   McCarthy Shane S   Crawford Andrew A AA   Bombieri Cristina C   Cocca Massimiliano M   Farmaki Aliki-Eleni AE   Gaunt Tom R TR   Jousilahti Pekka P   Kooijman Marjolein N MN   Lehne Benjamin B   Malerba Giovanni G   Männistö Satu S   Matchan Angela A   Medina-Gomez Carolina C   Metrustry Sarah J SJ   Nag Abhishek A   Ntalla Ioanna I   Paternoster Lavinia L   Rayner Nigel W NW   Sala Cinzia C   Scott William R WR   Shihab Hashem A HA   Southam Lorraine L   St Pourcain Beate B   Traglia Michela M   Trajanoska Katerina K   Zaza Gialuigi G   Zhang Weihua W   Artigas María S MS   Bansal Narinder N   Benn Marianne M   Chen Zhongsheng Z   Danecek Petr P   Lin Wei-Yu WY   Locke Adam A   Luan Jian'an J   Manning Alisa K AK   Mulas Antonella A   Sidore Carlo C   Tybjaerg-Hansen Anne A   Varbo Anette A   Zoledziewska Magdalena M   Finan Chris C   Hatzikotoulas Konstantinos K   Hendricks Audrey E AE   Kemp John P JP   Moayyeri Alireza A   Panoutsopoulou Kalliope K   Szpak Michal M   Wilson Scott G SG   Boehnke Michael M   Cucca Francesco F   Di Angelantonio Emanuele E   Langenberg Claudia C   Lindgren Cecilia C   McCarthy Mark I MI   Morris Andrew P AP   Nordestgaard Børge G BG   Scott Robert A RA   Tobin Martin D MD   Wareham Nicholas J NJ   Burton Paul P   Chambers John C JC   Smith George Davey GD   Dedoussis George G   Felix Janine F JF   Franco Oscar H OH   Gambaro Giovanni G   Gasparini Paolo P   Hammond Christopher J CJ   Hofman Albert A   Jaddoe Vincent W V VWV   Kleber Marcus M   Kooner Jaspal S JS   Perola Markus M   Relton Caroline C   Ring Susan M SM   Rivadeneira Fernando F   Salomaa Veikko V   Spector Timothy D TD   Stegle Oliver O   Toniolo Daniela D   Uitterlinden André G AG   Barroso Inês I   Greenwood Celia M T CMT   Perry John R B JRB   Walker Brian R BR   Butterworth Adam S AS   Xue Yali Y   Durbin Richard R   Small Kerrin S KS   Soranzo Nicole N   Timpson Nicholas J NJ   Zeggini Eleftheria E  

American journal of human genetics 20170525 6


Deep sequence-based imputation can enhance the discovery power of genome-wide association studies by assessing previously unexplored variation across the common- and low-frequency spectra. We applied a hybrid whole-genome sequencing (WGS) and deep imputation approach to examine the broader allelic architecture of 12 anthropometric traits associated with height, body mass, and fat distribution in up to 267,616 individuals. We report 106 genome-wide significant signals that have not been previousl  ...[more]

Similar Datasets

| S-EPMC5458552 | biostudies-literature
| S-EPMC4143683 | biostudies-literature
| S-EPMC8823485 | biostudies-literature
| S-EPMC6824067 | biostudies-literature
| S-EPMC10137786 | biostudies-literature
| S-EPMC11373650 | biostudies-literature
| S-EPMC8546043 | biostudies-literature
| S-EPMC7428517 | biostudies-literature
| S-EPMC9772568 | biostudies-literature
| S-EPMC10374910 | biostudies-literature