ABSTRACT: Abstract Background: Hypothalamic-pituitary-adrenal (HPA) axis dysregulation is a proposed etiological mechanism of psychosis. Recent studies highlighted impact of the FKBP5 gene and its functional variant rs1360780, which risk (T) allele affects the activity of HPA axis following stress exposure, on psychotic patients exposed to early trauma (1). Additionally, risk allele and trauma dependent FKBP5 demethylation in intron 7 was observed in traumatized individuals (2). Thus, the purpose of this pilot study was to investigate influence of the risk allele and trauma on FKBP5 DNA methylation levels at intron 7 in psychotic patients and to compare it with healthy individuals. Methods: The sample consisted of 24 psychosis spectrum patients and 24 controls matched by age and gender. All participants were genotyped for rs1360780 and divided into 2 groups depending on the presence of the risk allele (risk and nonrisk group). DNA methylation levels at 3 CpG sites (CpG1, CpG2, and CpG3) in intron 7 were analyzed by Sanger sequencing. Early-life adversities were measured by Childhood Trauma Questionnaire. Pearson correlation and t test were performed as appropriate. Results: Analyses revealed decreased FKBP5 methylation at targeted CpG sites and averaged methylation level (AML) at intron 7 in patients compared to controls (P = .026, P = .017, P = .027, and P = .003, respectively). Decreased AML and methylation at CpG3 were observed comparing risk and nonrisk patients’ groups (P = .018 and P = .016, respectively). Additionally, decreased methylation was found in risk patients’ group compared to risk controls’ group. No differences were found comparing nonrisk groups. Furthermore, strong negative associations between trauma and methylation at CpG3 and AML were observed only in risk controls’ group (r = ?0.707, P = .007; r = ?0.741, P = .004, respectively). Conclusion: Our preliminary results revealed allele-specific epigenetic changes of the FKBP5 gene in psychotic patients, which is in line with previous reports in traumatized individuals. Trauma-related demethylation in risk controls’ group supports the hypothesis that psychotic and stress-related conditions could share common neurobiological underlying mechanism, such as HPA axis dysregulation, particularly in individuals with genetic predisposition for altered stress response. References 1.Daskalakis NP, Binder EB. Schizophrenia in the spectrum of gene-stress interactions: the FKBP5 example. Schizophr Bull. 2015;41:323–329. 2.Klengel T, Mehta D, Anacker C et al. Allele-specific FKBP5 DNA demethylation mediates gene-childhood trauma interactions. Nat Neurosci. 2013;16:33–41.