Unknown

Dataset Information

0

Prokaryotic Communities at Different Depths between Soils with and without Tomato Bacterial Wilt but Pathogen-Present in a Single Greenhouse.


ABSTRACT: The characterization of microbial communities that promote or suppress soil-borne pathogens is important for controlling plant diseases. We compared prokaryotic communities in soil with or without the signs of tomato bacterial wilt caused by Ralstonia solanacearum. Soil samples were collected from a greenhouse at two different depths because this pathogen is present in deep soil. We used samples from sites in which we detected phcA, a key gene regulating R. solanacearum pathogenicity. The pyrosequencing of prokaryotic 16S rRNA sequences in four soil samples without disease symptoms but with phcA and in two soil samples with disease symptoms indicated that community richness was not significantly different between these two soils; however, microbial diversity in the lower soil layer was higher in soil samples without disease symptoms but with phcA. A difference in prokaryotic community structures between soil samples with and without bacterial wilt was only observed in the upper soil layer despite apparent similarities in the communities at the phylum level. Proteobacteria, Acidobacteria, Chloroflexi, Verrucomicrobia, and several Archaea were more abundant in soil samples without disease symptoms, whereas taxa in another eight phyla were more abundant in soil samples with disease symptoms. Furthermore, some prokaryotic taxa were abundant specifically in the lower layer of soil, regardless of whether disease was present. These prokaryotic taxa may suppress or accelerate the pathogenesis of bacterial wilt and are good targets for future studies on disease control.

SUBMITTER: Lee CG 

PROVIDER: S-EPMC5478534 | biostudies-literature | 2017 Jun

REPOSITORIES: biostudies-literature

altmetric image

Publications

Prokaryotic Communities at Different Depths between Soils with and without Tomato Bacterial Wilt but Pathogen-Present in a Single Greenhouse.

Lee Chol Gyu CG   Iida Toshiya T   Inoue Yasuhiro Y   Muramoto Yasunori Y   Watanabe Hideki H   Nakaho Kazuhiro K   Ohkuma Moriya M  

Microbes and environments 20170513 2


The characterization of microbial communities that promote or suppress soil-borne pathogens is important for controlling plant diseases. We compared prokaryotic communities in soil with or without the signs of tomato bacterial wilt caused by Ralstonia solanacearum. Soil samples were collected from a greenhouse at two different depths because this pathogen is present in deep soil. We used samples from sites in which we detected phcA, a key gene regulating R. solanacearum pathogenicity. The pyrose  ...[more]

Similar Datasets

| S-EPMC5745023 | biostudies-literature
| S-EPMC6370769 | biostudies-literature
| S-EPMC7155298 | biostudies-literature
| S-EPMC6706014 | biostudies-literature
| S-EPMC5702354 | biostudies-literature
| S-EPMC8676472 | biostudies-literature
2020-03-04 | GSE146289 | GEO
| S-EPMC5597756 | biostudies-literature
| S-EPMC7989089 | biostudies-literature
| PRJEB27237 | ENA