Unknown

Dataset Information

0

A high-spin square-planar Fe(ii) complex stabilized by a trianionic pincer-type ligand and conclusive evidence for retention of geometry and spin state in solution.


ABSTRACT: Square-planar high-spin Fe(ii) molecular compounds are rare and the only three non-macrocyclic or sterically-driven examples reported share a common FeO4 core. Using an easily modifiable pincer-type ligand, the successful synthesis of the first compound of this type that breaks the FeO4 motif was achieved. In addition, we present the first evidence that geometry and spin state persist in solution. Extensive characterization includes the first high-field EPR and variable field/temperature Mössbauer spectra for this class of compounds. Analysis of the spectroscopic data indicates this complex exhibits a large and positive zero-field splitting tensor. Furthermore, the unusually small ?EQ value determined for this compound is rationalized on the basis of DFT calculations.

SUBMITTER: Pascualini ME 

PROVIDER: S-EPMC5491960 | biostudies-literature | 2015 Jan

REPOSITORIES: biostudies-literature

altmetric image

Publications

A high-spin square-planar Fe(ii) complex stabilized by a trianionic pincer-type ligand and conclusive evidence for retention of geometry and spin state in solution.

Pascualini M E ME   Di Russo N V NV   Thuijs A E AE   Ozarowski A A   Stoian S A SA   Abboud K A KA   Christou G G   Veige A S AS  

Chemical science 20141015 1


Square-planar high-spin Fe(ii) molecular compounds are rare and the only three non-macrocyclic or sterically-driven examples reported share a common FeO<sub>4</sub> core. Using an easily modifiable pincer-type ligand, the successful synthesis of the first compound of this type that breaks the FeO<sub>4</sub> motif was achieved. In addition, we present the first evidence that geometry and spin state persist in solution. Extensive characterization includes the first high-field EPR and variable fie  ...[more]

Similar Datasets

| S-EPMC4804195 | biostudies-other
| S-EPMC8395886 | biostudies-literature
| S-EPMC6993455 | biostudies-literature
| S-EPMC2902169 | biostudies-literature
| S-EPMC8367297 | biostudies-literature
| S-EPMC4949422 | biostudies-literature
| S-EPMC4034079 | biostudies-other
| S-EPMC3813930 | biostudies-literature
| S-EPMC5950828 | biostudies-literature
| S-EPMC8251799 | biostudies-literature