Unknown

Dataset Information

0

Neutral and charged inter-valley biexcitons in monolayer MoSe2.


ABSTRACT: In atomically thin transition metal dichalcogenides (TMDs), reduced dielectric screening of the Coulomb interaction leads to strongly correlated many-body states, including excitons and trions, that dominate the optical properties. Higher-order states, such as bound biexcitons, are possible but are difficult to identify unambiguously using linear optical spectroscopy methods. Here, we implement polarization-resolved two-dimensional coherent spectroscopy (2DCS) to unravel the complex optical response of monolayer MoSe2 and identify multiple higher-order correlated states. Decisive signatures of neutral and charged inter-valley biexcitons appear in cross-polarized two-dimensional spectra as distinct resonances with respective ?20 and ?5?meV binding energies-similar to recent calculations using variational and Monte Carlo methods. A theoretical model considering the valley-dependent optical selection rules reveals the quantum pathways that give rise to these states. Inter-valley biexcitons identified here, comprising of neutral and charged excitons from different valleys, offer new opportunities for developing ultrathin biexciton lasers and polarization-entangled photon sources.

SUBMITTER: Hao K 

PROVIDER: S-EPMC5493760 | biostudies-literature | 2017 Jun

REPOSITORIES: biostudies-literature

altmetric image

Publications


In atomically thin transition metal dichalcogenides (TMDs), reduced dielectric screening of the Coulomb interaction leads to strongly correlated many-body states, including excitons and trions, that dominate the optical properties. Higher-order states, such as bound biexcitons, are possible but are difficult to identify unambiguously using linear optical spectroscopy methods. Here, we implement polarization-resolved two-dimensional coherent spectroscopy (2DCS) to unravel the complex optical resp  ...[more]

Similar Datasets

| S-EPMC6137141 | biostudies-literature
| S-EPMC6536528 | biostudies-literature
| S-EPMC8531338 | biostudies-literature
| S-EPMC9066428 | biostudies-literature
| S-EPMC9473491 | biostudies-literature
| S-EPMC4761959 | biostudies-literature
| S-EPMC5593425 | biostudies-literature
| S-EPMC8728888 | biostudies-literature
| S-EPMC6137096 | biostudies-literature
| S-EPMC7711692 | biostudies-literature