Project description:The targeting of oncogenic 'driver' kinases with small molecule inhibitors has proven to be a highly effective therapeutic strategy in selected non-small cell lung cancer (NSCLC) patients. However, acquired resistance to targeted therapies invariably arises and is a major limitation to patient care. ROS1 fusion proteins are a recently described class of oncogenic driver, and NSCLC patients that express these fusions generally respond well to ROS1-targeted therapy. In this study, we sought to determine mechanisms of acquired resistance to ROS1 inhibition. To accomplish this, we analyzed tumor samples from a patient who initially responded to the ROS1 inhibitor crizotinib but eventually developed acquired resistance. In addition, we generated a ROS1 inhibition-resistant derivative of the initially sensitive NSCLC cell line HCC78. Previously described mechanisms of acquired resistance to tyrosine kinase inhibitors including target kinase-domain mutation, target copy number gain, epithelial-mesenchymal transition, and conversion to small cell lung cancer histology were found to not underlie resistance in the patient sample or resistant cell line. However, we did observe a switch in the control of growth and survival signaling pathways from ROS1 to EGFR in the resistant cell line. As a result of this switch, ROS1 inhibition-resistant HCC78 cells became sensitive to EGFR inhibition, an effect that was enhanced by co-treatment with a ROS1 inhibitor. Our results suggest that co-inhibition of ROS1 and EGFR may be an effective strategy to combat resistance to targeted therapy in some ROS1 fusion-positive NSCLC patients.
Project description:Epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs) are current standard of care for patients with EGFR mutation and metastatic non-small-cell lung carcinoma (NSCLC), but most patients using EGFR TKIs acquire resistance later. So, overcoming resistance of EGFR TKIs has become an important issue in the treatment of NSCLC. Previously, therapeutics targeting Bruton's tyrosine kinase (BTK) have been successful in treating several hematologic malignancies. However, the role of BTK in NSCLC is still unknown. In this study, by examining surgical specimens from 80 NSCLC patients and their clinicopathologic parameters, we found significant correlation between high BTK expression and tumor differentiation, p-stage, lymph node metastatic status, maximum tumor size, and poor prognosis of patients. Using two NSCLC cell lines A540 and PC9, we demonstrated that BTKpos cells exhibited more stemness (OCT4, SOX2) and EMT (E-Cadherin, Slug) markers than BTKneg cells. Knockdown of BTK sensitized the NSCLC cells to Gefitinib. Meanwhile, the second-generation BTK inhibitor Acalabrutinib effectively suppressed SOX2, STAT3/JAK2/Akt axis and potentiated the anti-proliferative effect of Gefitinib and Osimertinib in NSCLC cells, including the T790M H1975 cells. Furthermore, Acalabrutinib and Osimertinib combination exhibited significant tumor growth inhibition of H1975-derived tumors in vivo. Our findings suggested that BTK mediates stemness and EMT properties, and inhibition of BTK potentiates the effect of Gefitinib and Osimertinib in NSCLC cells resistant to TKI. This implies a new approach to treat the NSCLC patients with resistance to previous TKI treatment.
Project description:Drug resistance can notably restrict clinical applications of gefitinib that is a commonly used EGFR-tyrosine kinase inhibitors (EGFR-TKIs) for non-small cell lung cancer (NSCLC). The attempts in exploring novel drug targets and reversal strategies are still needed, since gefitinib resistance has not been fully addressed. Protease-activated receptor 2 (PAR2), a G protein-coupled receptor, possesses a transactivation with EGFR to initiate a variety of intracellular signal transductions, but there is a lack of investigations on the role of PAR2 in gefitinib resistance. This study established that protease-activated receptor 2 (PAR2), actively participated in NSCLC resistant to gefitinib. PAR2 expression was significantly up-regulated when NSCLC cells or tumor tissues became gefitinib resistance. PAR2 inhibition notably enhanced gefitinib to modulate EGFR transactivation, cell viability, migration and apoptosis in gefitinib-sensitive and-resistant NSCLC cells, suggesting its reversal effects in gefitinib resistance. Meanwhile, the combination of a PAR2 inhibitor (P2pal-18S) and gefitinib largely blocked ERK phosphorylation and epithelial-mesenchymal transition (EMT) compared to gefitinib alone. Importantly, we probed its underlying mechanism and uncovered that PAR2 blockade sensitized gefitinib and reversed its resistance mainly via β-arrestin-EGFR-ERK signaling axis. These effects of PAR2 inhibition were further confirmed by the in vivo study which showed that P2pal-18S reactivated gefitinib to inhibit tumor growth via restricting ERK activation. Taken together, this study could not only reveal a new mechanism of receptor-mediated transactivation to modulate drug resistance, but also provide a novel drug target and direction for overcoming gefitinib resistance in NSCLC.
Project description:In this study, we have examined the anticancer effects of SH005S7 on MET-amplified and (HCC827GR) NSCLC cells and their primary HCC827 cells. In vitro, first of all, cell viability and colony formation assay confirmed the growth inhibitory effects of SH005S7 on both cells. Second, SH005S7 inactivated EGFR-related multiple cell signaling, which was associated with a marked decrease in the constitutive phosphorylation of EGFR, HER3, MET, AKT, and ERK. Third, SH005S7 attenuated the anchorage-independent cell growth. Fourth, SH005S7 blocked invasive and metastatic capability by downregulation of mesenchymal markers-vimentin, snail, and MMP-9. Fifth, BrdU assay confirmed the cell cycle arrest of SH005S7 on these cells. When administered orally to nude mice xenografically transplanted human NSCLC, SH005S7 inhibited the growth of tumor and did not cause hepatotoxicity and nephrotoxicity in animals. Immunohistochemical and Western blot analyses of tissue showed that the suppression of growth correlated with inhibition of proliferation (Ki-67, PCNA), invasiveness (vimentin, snail), and angiogenesis (CD31) marker and decrement in the constitutive and phosphorylation of EGFR, HER3, MET, AKT, and ERK. Additionally, SH005S7 had immune stimulatory effects by TNF-α cytokine release on macrophage, without cell cytotoxicity. Overall, our results suggest that SH005S7 can inhibit the growth of MET-amplified and gefitinib-resistant NSCLC cells through the suppression of EGFR-related multiple targets linked to overcome gefitinib resistance.
Project description:Compensatory activation of the signal transduction pathways is one of the major obstacles for the targeted therapy of non-small cell lung cancer (NSCLC). Herein, we present the therapeutic strategy of combined targeted therapy against the MEK and phosphoinositide-3 kinase (PI3K) pathways for acquired resistance to epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs) in NSCLC. We investigated the efficacy of combined trametinib plus taselisib therapy using experimentally established EGFR-TKI-resistant NSCLC cell lines. The results showed that the feedback loop between MEK/ERK and PI3K/AKT pathways had developed in several resistant cell lines, which caused the resistance to single-agent treatment with either inhibitor alone. Meanwhile, the combined therapy successfully regulated the compensatory activation of the key intracellular signals and synergistically inhibited the cell growth of those cells in vitro and in vivo. The resistance mechanisms for which the dual kinase inhibitor therapy proved effective included (MET) mesenchymal-epithelial transition factor amplification, induction of epithelial-to-mesenchymal transition (EMT) and EGFR T790M mutation. In further analysis, the combination therapy induced the phosphorylation of p38 MAPK signaling, leading to the activation of apoptosis cascade. Additionally, long-term treatment with the combination therapy induced the conversion from EMT to mesenchymal-to-epithelial transition in the resistant cell line harboring EMT features, restoring the sensitivity to EGFR-TKI. In conclusion, our results indicate that the combined therapy using MEK and PI3K inhibitors is a potent therapeutic strategy for NSCLC with the acquired resistance to EGFR-TKIs.
Project description:Simple Summary Lung cancer that is driven by mutations in the epidermal growth factor receptor (EGFR) is currently treated with tyrosine kinase inhibitors (TKIs). Although patients initially respond well to TKI treatment, drug resistance against EGFR-targeted therapy emerges. Attempts to combine immunotherapy with EGFR-targeted treatment to prolong response rates or prevent the development of resistances have been limited due to insufficient knowledge about the effects of targeted therapy on the tumour microenvironment (TME) in EGFR-driven tumours and tumour-infiltrating immune cells. The aims of this study were to improve our understanding on the impact of EGFR inhibition on the immune response in EGFR-driven lung cancer and, furthermore, to gain insights into the impact of combining targeted therapy with immunotherapy on the TME. Abstract EGFR-driven non-small-cell lung cancer (NSCLC) patients are currently treated with TKIs targeting EGFR, such as erlotinib or osimertinib. Despite a promising initial response to TKI treatment, most patients gain resistance to oncogene-targeted therapy, and tumours progress. With the development of inhibitors against immune checkpoints, such as PD-1, that mediate an immunosuppressive microenvironment, immunotherapy approaches attempt to restore a proinflammatory immune response in tumours. However, this strategy has shown only limited benefits in EGFR-driven NSCLC. Approaches combining EGFR inhibition with immunotherapy to stimulate the immune response and overcome resistance to therapy have been limited due to insufficient understanding about the effect of EGFR-targeting treatment on the immune cells in the TME. Here, we investigate the impact of EGFR inhibition by erlotinib on the TME and its effect on the antitumour response of the immune cell infiltrate. For this purpose, we used a transgenic conditional mouse model to study the immunological profile in EGFR-driven NSCLC tumours. We found that EGFR inhibition mediated a higher infiltration of immune cells and increased local proliferation of T-cells in the tumours. Moreover, inhibiting EGFR signalling led to increased activation of immune cells in the TME. Most strikingly, combined simultaneous blockade of EGFR and anti-PD-1 (aPD-1) enhanced tumour treatment response in a transgenic mouse model of EGFR-driven NSCLC. Thus, our findings show that EGFR inhibition promotes an active and proinflammatory immune cell infiltrate in the TME while improving response to immune checkpoint inhibitors in EGFR-driven NSCLC.
Project description:The first evidence of osimertinib resistance mediated by the epidermal growth factor receptor (EGFR) mutation C797S was reported three years ago. Since then, no major breakthroughs have been achieved to target the clinically relevant mutant variant that impedes covalent bond formation with irreversible EGFR inhibitors. Although several biochemically active compounds have been described, only a few inhibitors that potently act on the cellular level or in vivo have been introduced so far. Herein, we give an overview of current approaches in the field and highlight the challenges that need to be addressed in future research projects to overcome the C797S-mediated drug resistance.
Project description:Osimertinib is an irreversible, third-generation epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor that is highly selective for EGFR-activating mutations as well as the EGFR T790M mutation in patients with advanced non-small cell lung cancer (NSCLC) with EGFR oncogene addiction. Despite the documented efficacy of osimertinib in first- and second-line settings, patients inevitably develop resistance, with no further clear-cut therapeutic options to date other than chemotherapy and locally ablative therapy for selected individuals. On account of the high degree of tumour heterogeneity and adaptive cellular signalling pathways in NSCLC, the acquired osimertinib resistance is highly heterogeneous, encompassing EGFR-dependent as well as EGFR-independent mechanisms. Furthermore, data from repeat plasma genotyping analyses have highlighted differences in the frequency and preponderance of resistance mechanisms when osimertinib is administered in a front-line versus second-line setting, underlying the discrepancies in selection pressure and clonal evolution. This review summarises the molecular mechanisms of resistance to osimertinib in patients with advanced EGFR-mutated NSCLC, including MET/HER2 amplification, activation of the RAS-mitogen-activated protein kinase (MAPK) or RAS-phosphatidylinositol 3-kinase (PI3K) pathways, novel fusion events and histological/phenotypic transformation, as well as discussing the current evidence regarding potential new approaches to counteract osimertinib resistance.
Project description:PurposeImaging time-series data routinely collected in clinical trials are predominantly explored for covariates as covariates for survival analysis to support decision-making in oncology drug development. The key objective of this study was to assess if insights regarding two relapse resistance modes, de-novo (treatment selects out a pre-existing resistant clone) or acquired (resistant clone develops during treatment), could be inferred from such data.MethodsIndividual lesion size time-series data were collected from ten Phase III study arms where patients were treated with either first-generation EGFR inhibitors (erlotinib or gefitinib) or chemotherapy (paclitaxel/carboplatin combination or docetaxel). The data for each arm of each study were analysed via a competing models framework to determine which of the two mathematical models of resistance, de-novo or acquired, best-described the data.ResultsWithin the first-line setting (treatment naive patients), we found that the de-novo model best-described the gefitinib data, whereas, for paclitaxel/carboplatin, the acquired model was preferred. In patients pre-treated with paclitaxel/carboplatin, the acquired model was again preferred for docetaxel (chemotherapy), but for patients receiving gefitinib or erlotinib, both the acquired and de-novo models described the tumour size dynamics equally well. Furthermore, in all studies where a single model was preferred, we found a degree of correlation in the dynamics of lesions within a patient, suggesting that there is a degree of homogeneity in pharmacological response.ConclusionsThis analysis highlights that tumour size dynamics differ between different treatments and across lines of treatment. The analysis further suggests that these differences could be a manifestation of differing resistance mechanisms.