Unknown

Dataset Information

0

Sak and Sak4 recombinases are required for bacteriophage replication in Staphylococcus aureus.


ABSTRACT: DNA-single strand annealing proteins (SSAPs) are recombinases frequently encoded in the genome of many bacteriophages. As SSAPs can promote homologous recombination among DNA substrates with an important degree of divergence, these enzymes are involved both in DNA repair and in the generation of phage mosaicisms. Here, analysing Sak and Sak4 as representatives of two different families of SSAPs present in phages infecting the clinically relevant bacterium Staphylococcus aureus, we demonstrate for the first time that these enzymes are absolutely required for phage reproduction. Deletion of the genes encoding these enzymes significantly reduced phage replication and the generation of infectious particles. Complementation studies revealed that these enzymes are required both in the donor (after prophage induction) and in the recipient strain (for infection). Moreover, our results indicated that to perform their function SSAPs require the activity of their cognate single strand binding (Ssb) proteins. Mutational studies demonstrated that the Ssb proteins are also required for phage replication, both in the donor and recipient strain. In summary, our results expand the functions attributed to the Sak and Sak4 proteins, and demonstrate that both SSAPs and Ssb proteins are essential for the life cycle of temperate staphylococcal phages.

SUBMITTER: Neamah MM 

PROVIDER: S-EPMC5499656 | biostudies-literature | 2017 Jun

REPOSITORIES: biostudies-literature

altmetric image

Publications

Sak and Sak4 recombinases are required for bacteriophage replication in Staphylococcus aureus.

Neamah Maan M MM   Mir-Sanchis Ignacio I   López-Sanz María M   Acosta Sonia S   Baquedano Ignacio I   Haag Andreas F AF   Marina Alberto A   Ayora Silvia S   Penadés José R JR  

Nucleic acids research 20170601 11


DNA-single strand annealing proteins (SSAPs) are recombinases frequently encoded in the genome of many bacteriophages. As SSAPs can promote homologous recombination among DNA substrates with an important degree of divergence, these enzymes are involved both in DNA repair and in the generation of phage mosaicisms. Here, analysing Sak and Sak4 as representatives of two different families of SSAPs present in phages infecting the clinically relevant bacterium Staphylococcus aureus, we demonstrate fo  ...[more]

Similar Datasets

| S-EPMC3421715 | biostudies-literature
| S-EPMC3900892 | biostudies-literature
| S-EPMC6163856 | biostudies-literature
| S-EPMC5477386 | biostudies-literature
| S-EPMC7698491 | biostudies-literature
| S-EPMC4783081 | biostudies-literature
| S-EPMC8950790 | biostudies-literature
| S-EPMC10864608 | biostudies-literature
| S-EPMC4249044 | biostudies-literature
| S-EPMC4632378 | biostudies-literature