Project description:Human tumors show aberrant RNA profiles that can originate from multiple pathways and mechanisms. One underexplored area is that alterations in RNA decapping, the addition of a 5´-end N7-methyl guanosine (m7G)-cap that is essential for stabilization of the RNA molecule, could also be involved in the distorted transcript landscape of cancer cells. Herein we show that the RNA editing enzyme NUDT16 undergoes promoter CpG island methylation-associated silencing in T-cell acute lymphoblastic leukemia (T-ALL) cell lines and primary samples. The restoration of in vitro and in vivo NUDT16 activity highlights the growth inhibitory features of the gene. Most importantly, we identify that the epigenetic loss of NUDT16 in leukemia cells prevents the RNA decay of growth-promoting genes, among them the C-MYC stabilizers FBXO28 and USP37, leading to higher levels of the oncogenic protein.
Project description:Nudt16p is a nuclear RNA decapping protein initially identified in Xenopus (X29) and known to exist in mammals. Here, we identified putative orthologs in 57 different organisms ranging from humans to Cnidaria (anemone/coral). In vitro analysis demonstrated the insect ortholog can bind RNA and hydrolyze the m(7)G cap from the 5'-end of RNAs indicating the Nudt16 gene product is functionally conserved across metazoans. This study also identified a closely related paralogous protein, known as Syndesmos, which resulted from a gene duplication that occurred in the tetrapod lineage near the amniote divergence. While vertebrate Nudt16p is a nuclear RNA decapping protein, Syndesmos is associated with the cytoplasmic membrane in tetrapods. Syndesmos is inactive for RNA decapping but retains RNA-binding activity. This structure/function analysis demonstrates evolutionary conservation of the ancient Nudt16 protein suggesting the existence and maintenance of a nuclear RNA degradation pathway in metazoans.
Project description:Ubiquitin-like, containing PHD and RING finger domain, (UHRF) family members are overexpressed putative oncogenes in several cancer types. We evaluated the protein abundance of UHRF family members in acute leukemia. A marked overexpression of UHRF1 protein was observed in ALL compared with AML. An analysis of human leukemia transcriptomic datasets revealed concordant overexpression of UHRF1 in B-Cell and T-Cell ALL compared with CLL, AML, and CML. In-vitro studies demonstrated reduced cell viability with siRNA-mediated knockdown of UHRF1 in both B-ALL and T-ALL, associated with reduced c-Myc protein expression. Mechanistic studies indicated that UHRF1 directly interacts with c-Myc, enabling ALL expansion via the CDK4/6-phosphoRb axis. Our findings highlight a previously unknown role of UHRF1 in regulating c-Myc protein expression and implicate UHRF1 as a potential therapeutic target in ALL.
Project description:To investigate the genetic and epigenetic landscape of hypodiploid (<45 chromosomes) acute lymphoblastic leukemia (ALL).Single nucleotide polymorphism array, whole exome sequencing, RNA sequencing, and methylation array analyses were performed on eleven hypodiploid ALL cases.In line with previous studies, mutations in IKZF3 and FLT3 were detected in near-haploid (25-30 chromosomes) cases. Low hypodiploidy (31-39 chromosomes) was associated with somatic TP53 mutations. Notably, mutations of this gene were also found in 3/3 high hypodiploid (40-44 chromosomes) cases, suggesting that the mutational patterns are similar in low hypodiploid and high hypodiploid ALL. The high hypodiploid ALLs frequently displayed substantial cell-to-cell variability in chromosomal content, indicative of chromosomal instability; a rare phenomenon in ALL. Gene expression analysis showed that genes on heterodisomic chromosomes were more highly expressed in hypodiploid cases. Cases clustered according to hypodiploid subtype in the unsupervised methylation analyses, but there was no association between chromosomal copy number and methylation levels. A comparison between samples obtained at diagnosis and relapse showed that the relapse did not arise from the major diagnostic clone in 3/4 cases.Taken together, our data support the conclusion that near-haploid and low hypodiploid ALL are different with regard to mutational profiles and also suggest that ALL cases with high hypodiploidy may harbor chromosomal instability.
Project description:Adult B-lymphoblastic leukemia (B-ALL) is a hematological malignancy characterized by genetic heterogeneity. Despite successful remission induction with classical chemotherapeutics and novel targeted agents, enduring remission is often hampered by disease relapse due to outgrowth of a pre-existing subclone resistant against the treatment. In this study, we show that small glycophosphatidylinositol (GPI)-anchor deficient CD52-negative B-cell populations are frequently present already at diagnosis in B-ALL patients, but not in patients suffering from other B-cell malignancies. We demonstrate that the GPI-anchor negative phenotype results from loss of mRNA expression of the PIGH gene, which is involved in the first step of GPI-anchor synthesis. Loss of PIGH mRNA expression within these B-ALL cells follows epigenetic silencing rather than gene mutation or deletion. The coinciding loss of CD52 membrane expression may contribute to the development of resistance to alemtuzumab (ALM) treatment in B-ALL patients resulting in the outgrowth of CD52-negative escape variants. Additional treatment with 5-aza-2'-deoxycytidine may restore expression of CD52 and revert ALM resistance.
Project description:Treatment resistance in T-cell acute lymphoblastic leukemia (T-ALL) is associated with phosphatase and tensin homolog (PTEN) deletions and resultant phosphatidylinositol 3'-kinase (PI3K)-AKT pathway activation, as well as MYC overexpression, and these pathways repress mitochondrial apoptosis in established T-lymphoblasts through poorly defined mechanisms. Normal T-cell progenitors are hypersensitive to mitochondrial apoptosis, a phenotype that is dependent on the expression of proapoptotic BIM. In a conditional zebrafish model, MYC downregulation induced BIM expression in T-lymphoblasts, an effect that was blunted by expression of constitutively active AKT. In human T-ALL cell lines and treatment-resistant patient samples, treatment with MYC or PI3K-AKT pathway inhibitors each induced BIM upregulation and apoptosis, indicating that BIM is repressed downstream of MYC and PI3K-AKT in high-risk T-ALL. Restoring BIM function in human T-ALL cells using a stapled peptide mimetic of the BIM BH3 domain had therapeutic activity, indicating that BIM repression is required for T-ALL viability. In the zebrafish model, where MYC downregulation induces T-ALL regression via mitochondrial apoptosis, T-ALL persisted despite MYC downregulation in 10% of bim wild-type zebrafish, 18% of bim heterozygotes and in 33% of bim homozygous mutants (P=0.017). We conclude that downregulation of BIM represents a key survival signal downstream of oncogenic MYC and PI3K-AKT signaling in treatment-resistant T-ALL.
Project description:Leukemogenesis is considered to be a process by which a normal cell acquires new but aberrant identity in order to disseminate a malignant clonal population. Under this setting, the phenotype of the leukemic cells is identical to the leukemia-initiating cell in which the genetic insult is taking place. Thus, with some exceptions, B-cell and T-cell childhood leukemias are supposed to arise from B- or T-committed cells. In contrast, several recent studies have revealed that genetic alterations may act in a "hit-and-run" way in the cell-of-origin by imposing the tumor cell identity giving rise to either B-cell or T-cell leukemias. This novel mechanism of cell transformation is mediated by an epigenetic priming mechanism that is established by the initial genetic lesion. This initial hit might be unnecessary for the subsequent tumor evolution and conservation, being the epigenetic priming the engine for the tumor evolution.
Project description:Aberrant epigenetic modifications are well-recognized drivers for oncogenesis. Pediatric acute lymphoblastic leukemia (ALL) is no exception and serves as a model toward the significant impact these heritable alterations can have in leukemogenesis. In this brief review, we will focus on the main aspects of epigenetics, which control leukemogenesis in pediatric ALL, mainly DNA methylation, histone modification, and microRNA alterations. As we continue to gain better understanding of the driving mechanisms for pediatric ALL at both diagnosis and relapse, therapeutic interventions directed toward these pathways and mechanisms can be harnessed and introduced into clinical trials for pediatric ALL.
Project description:Similar to most cancers, genome-wide DNA methylation profiles are commonly altered in pediatric acute lymphoblastic leukemia (ALL); however, recent observations highlight that a large portion of malignancy-associated DNA methylation alterations are not accompanied by related gene expression changes. By analyzing and integrating the methylome and transcriptome profiles of pediatric B-cell ALL cases and primary tissue controls, we report 325 genes hypermethylated and downregulated and 45 genes hypomethylated and upregulated in pediatric B-cell ALL, irrespective of subtype. Repressed cation channel subunits and cAMP signaling activators and transducers are overrepresented, potentially indicating a reduced cellular potential to receive and propagate apoptotic signals. Furthermore, we report specific DNA methylation alterations with concurrent gene expression changes within individual ALL subtypes. The ETV6-RUNX1 translocation was associated with downregulation of ASNS and upregulation of the EPO-receptor, while Hyperdiploid patients (> 50 chr) displayed upregulation of B-cell lymphoma (BCL) members and repression of PTPRG and FHIT. In combination, these data indicate genetically distinct B-cell ALL subtypes contain cooperative epimutations and genome-wide epigenetic deregulation is common across all B-cell ALL subtypes.
Project description:Despite decades of clinical use, mechanisms of glucocorticoid resistance are poorly understood. We treated primary murine T lineage acute lymphoblastic leukemias (T-ALLs) with the glucocorticoid dexamethasone (DEX) alone and in combination with the pan-PI3 kinase inhibitor GDC-0941 and observed a robust response to DEX that was modestly enhanced by GDC-0941. Continuous in vivo treatment invariably resulted in outgrowth of drug-resistant clones, ~30% of which showed markedly reduced glucocorticoid receptor (GR) protein expression. A similar proportion of relapsed human T-ALLs also exhibited low GR protein levels. De novo or preexisting mutations in the gene encoding GR (Nr3c1) occurred in relapsed clones derived from multiple independent parental leukemias. CRISPR/Cas9 gene editing confirmed that loss of GR expression confers DEX resistance. Exposing drug-sensitive T-ALLs to DEX in vivo altered transcript levels of multiple genes, and this response was attenuated in relapsed T-ALLs. These data implicate reduced GR protein expression as a frequent cause of glucocorticoid resistance in T-ALL.