Label-Free Measurements of Tenofovir Diffusion Coefficients in a Microbicide Gel Using Raman Spectroscopy.
Ontology highlight
ABSTRACT: Confocal Raman spectroscopy was implemented in a new label-free technique to quantify molecular diffusion coefficients within gels. A leading anti-HIV drug, tenofovir, was analyzed in a clinical microbicide gel. The gel was tested undiluted, and in 10%-50% wt/wt dilutions with vaginal fluid simulant to capture the range of conditions likely occurring in vivo. The concentration distributions of tenofovir in gel over time and space were measured and input to a mathematical diffusion model to deduce diffusion coefficients. These were 3.16 ± 0.11 × 10-6 cm2/s in undiluted gel, and increased by 11%-46% depending on the extent of dilution. Results were interpreted with respect to traditional release rate measurements in devices such as Franz cells. This comparison highlighted an advantage of our assay in that it characterizes the diffusive barrier within the gel material itself; in contrast, release rate in the traditional assay is affected by external conditions, such as drug partitioning at the gel/liquid sink interface. This new assay is relevant to diffusion in polymeric hydrogels over pharmacologically relevant length scales, for example, those characteristic of topical drug delivery. Resulting transport parameters are salient measures of drug delivery potential, and serve as inputs to computational models of drug delivery performance.
SUBMITTER: Chuchuen O
PROVIDER: S-EPMC5503201 | biostudies-literature | 2017 Feb
REPOSITORIES: biostudies-literature
ACCESS DATA