Experimental studies of vibrational modes in a two-dimensional amorphous solid.
Ontology highlight
ABSTRACT: The boson peak, which represents an excess of vibrational states compared to Debye's prediction at low frequencies, has been studied extensively, and yet, its nature remains controversial. In this study, we focus on understanding the nature of the boson peak based on the spatial heterogeneity of modulus fluctuations using a simple model system of a highly jammed two-dimensional granular material. Despite the simplicity of our system, we find that the boson peak in our two-dimensional system shows a shape very similar to that of three-dimensional molecular glasses when approaching their boson peak frequencies. Our finding indicates a strong connection between the boson peak and the spatial heterogeneity of shear modulus fluctuations.The low-frequency collective vibrational modes, known as the boson peak, characterize many glasses at low temperature, yet its origin remains elusive. Zhang et al. show a correlation between the boson peak and the spatial heterogeneity of shear modulus fluctuation in a two-dimensional granular system.
SUBMITTER: Zhang L
PROVIDER: S-EPMC5503991 | biostudies-literature |
REPOSITORIES: biostudies-literature
ACCESS DATA