Unknown

Dataset Information

0

Metabolic Characterization of a Novel ROR? Knockout Mouse Model without Ataxia.


ABSTRACT: The retinoic acid receptor-related receptor ? (ROR?) is a nuclear receptor that plays an important role in regulation of metabolism and the immune system. Genetic deletion of the receptor yields mice with significant cerebellar developmental issues associated with severe ataxia. Although many metabolic studies have been performed in these models, the impaired locomotor activity of these mice is known to affect their normal mobility and feeding behaviors. This creates some difficulty in interpretation of the role of ROR? in models of metabolic disease where feeding and muscle function is a critical component of the pathophysiology. We generated a mouse with a floxed Rora allele that we crossed with a mouse line expressing Cre recombinase under the control of the EIIa promoter to obtain a full body deletion of Rora. This cross led to a partial deletion of the Rora locus likely due to mosaic expression of the EIIa-Cre transgene. These mice lack any signs of ataxia but display an improved metabolic profile relative to normal WT mice. The mice were resistant to diet- and age-induced metabolic syndrome and exhibited improved glucose tolerance and increased insulin sensitivity. Decreased ROR? expression in the mice was also associated with reduced inflammation in models of metabolic syndrome. These data indicate that suppression of ROR? activity improves metabolic function and reduces inflammation.

SUBMITTER: Billon C 

PROVIDER: S-EPMC5504173 | biostudies-literature | 2017

REPOSITORIES: biostudies-literature

altmetric image

Publications

Metabolic Characterization of a Novel RORα Knockout Mouse Model without Ataxia.

Billon Cyrielle C   Sitaula Sadichha S   Burris Thomas P TP  

Frontiers in endocrinology 20170711


The retinoic acid receptor-related receptor α (RORα) is a nuclear receptor that plays an important role in regulation of metabolism and the immune system. Genetic deletion of the receptor yields mice with significant cerebellar developmental issues associated with severe ataxia. Although many metabolic studies have been performed in these models, the impaired locomotor activity of these mice is known to affect their normal mobility and feeding behaviors. This creates some difficulty in interpret  ...[more]

Similar Datasets

| S-EPMC3371240 | biostudies-other
| S-EPMC4348561 | biostudies-literature
| S-EPMC3786297 | biostudies-literature
| S-EPMC5736353 | biostudies-literature
| S-EPMC8211560 | biostudies-literature
| S-EPMC7547682 | biostudies-literature
| S-EPMC10494209 | biostudies-literature
| S-EPMC10640972 | biostudies-literature
| S-EPMC9637792 | biostudies-literature
| S-EPMC2288764 | biostudies-literature