Unknown

Dataset Information

0

Scaling up and scaling down the production of galactaric acid from pectin using Trichoderma reesei.


ABSTRACT: Bioconversion of D-galacturonic acid to galactaric (mucic) acid has previously been carried out in small scale (50-1000 mL) cultures, which produce tens of grams of galactaric acid. To obtain larger amounts of biologically produced galactaric acid, the process needed to be scaled up using a readily available technical substrate. Food grade pectin was selected as a readily available source of D-galacturonic acid for conversion to galactaric acid.We demonstrated that the process using Trichoderma reesei QM6a ?gar1 udh can be scaled up from 1 L to 10 and 250 L, replacing pure D-galacturonic acid with commercially available pectin. T. reesei produced 18 g L-1 galactaric acid from food-grade pectin (yield 1.00 g [g D-galacturonate consumed]-1) when grown at 1 L scale, 21 g L-1 galactaric acid (yield 1.11 g [g D-galacturonate consumed]-1) when grown at 10 L scale and 14 g L-1 galactaric acid (yield 0.77 g [g D-galacturonate consumed]-1) when grown at 250 L scale. Initial production rates were similar to those observed in 500 mL cultures with pure D-galacturonate as substrate. Approximately 2.8 kg galactaric acid was precipitated from the 250 L culture, representing a recovery of 77% of the galactaric acid in the supernatant. In addition to scaling up, we also demonstrated that the process could be scaled down to 4 mL for screening of production strains in 24-well plate format. Production of galactaric acid from pectin was assessed for three strains expressing uronate dehydrogenase under alternative promoters and up to 11 g L-1 galactaric acid were produced in the batch process.The process of producing galactaric acid by bioconversion with T. reesei was demonstrated to be equally efficient using pectin as it was with D-galacturonic acid. The 24-well plate batch process will be useful screening new constructs, but cannot replace process optimisation in bioreactors. Scaling up to 250 L demonstrated good reproducibility with the smaller scale but there was a loss in yield at 250 L which indicated that total biomass extraction and more efficient DSP would both be needed for a large scale process.

SUBMITTER: Paasikallio T 

PROVIDER: S-EPMC5504852 | biostudies-literature | 2017 Jul

REPOSITORIES: biostudies-literature

altmetric image

Publications

Scaling up and scaling down the production of galactaric acid from pectin using Trichoderma reesei.

Paasikallio Toni T   Huuskonen Anne A   Wiebe Marilyn G MG  

Microbial cell factories 20170711 1


<h4>Background</h4>Bioconversion of D-galacturonic acid to galactaric (mucic) acid has previously been carried out in small scale (50-1000 mL) cultures, which produce tens of grams of galactaric acid. To obtain larger amounts of biologically produced galactaric acid, the process needed to be scaled up using a readily available technical substrate. Food grade pectin was selected as a readily available source of D-galacturonic acid for conversion to galactaric acid.<h4>Results</h4>We demonstrated  ...[more]

Similar Datasets

| S-EPMC4052684 | biostudies-literature
| S-EPMC5658622 | biostudies-literature
| S-EPMC4924338 | biostudies-literature
| S-EPMC9731294 | biostudies-literature
| S-EPMC6430808 | biostudies-literature
| S-EPMC9394075 | biostudies-literature
| S-EPMC1152451 | biostudies-other
| S-EPMC5628480 | biostudies-literature
| S-EPMC6509817 | biostudies-literature
| S-EPMC10992071 | biostudies-literature