Unknown

Dataset Information

0

Survival of tissue-resident memory T cells requires exogenous lipid uptake and metabolism.


ABSTRACT: Tissue-resident memory T (TRM) cells persist indefinitely in epithelial barrier tissues and protect the host against pathogens. However, the biological pathways that enable the long-term survival of TRM cells are obscure. Here we show that mouse CD8+ TRM cells generated by viral infection of the skin differentially express high levels of several molecules that mediate lipid uptake and intracellular transport, including fatty-acid-binding proteins 4 and 5 (FABP4 and FABP5). We further show that T-cell-specific deficiency of Fabp4 and Fabp5 (Fabp4/Fabp5) impairs exogenous free fatty acid (FFA) uptake by CD8+ TRM cells and greatly reduces their long-term survival in vivo, while having no effect on the survival of central memory T (TCM) cells in lymph nodes. In vitro, CD8+ TRM cells, but not CD8+ TCM cells, demonstrated increased mitochondrial oxidative metabolism in the presence of exogenous FFAs; this increase was not seen in Fabp4/Fabp5 double-knockout CD8+ TRM cells. The persistence of CD8+ TRM cells in the skin was strongly diminished by inhibition of mitochondrial FFA ?-oxidation in vivo. Moreover, skin CD8+ TRM cells that lacked Fabp4/Fabp5 were less effective at protecting mice from cutaneous viral infection, and lung Fabp4/Fabp5 double-knockout CD8+ TRM cells generated by skin vaccinia virus (VACV) infection were less effective at protecting mice from a lethal pulmonary challenge with VACV. Consistent with the mouse data, increased FABP4 and FABP5 expression and enhanced extracellular FFA uptake were also demonstrated in human CD8+ TRM cells in normal and psoriatic skin. These results suggest that FABP4 and FABP5 have a critical role in the maintenance, longevity and function of CD8+ TRM cells, and suggest that CD8+ TRM cells use exogenous FFAs and their oxidative metabolism to persist in tissue and to mediate protective immunity.

SUBMITTER: Pan Y 

PROVIDER: S-EPMC5509051 | biostudies-literature | 2017 Mar

REPOSITORIES: biostudies-literature

altmetric image

Publications


Tissue-resident memory T (T<sub>RM</sub>) cells persist indefinitely in epithelial barrier tissues and protect the host against pathogens. However, the biological pathways that enable the long-term survival of T<sub>RM</sub> cells are obscure. Here we show that mouse CD8<sup>+</sup> T<sub>RM</sub> cells generated by viral infection of the skin differentially express high levels of several molecules that mediate lipid uptake and intracellular transport, including fatty-acid-binding proteins 4 and  ...[more]

Similar Datasets

| S-EPMC10120061 | biostudies-literature
| S-EPMC10330511 | biostudies-literature
| S-EPMC6277633 | biostudies-literature
| S-EPMC10360410 | biostudies-literature
| S-EPMC6214977 | biostudies-literature
| S-EPMC7375465 | biostudies-literature
| S-EPMC9005529 | biostudies-literature
| S-EPMC10544202 | biostudies-literature
| S-EPMC5074364 | biostudies-literature
| S-EPMC6392030 | biostudies-literature