Experimental Investigation of Mechanical Properties of Black Shales after CO?-Water-Rock Interaction.
Ontology highlight
ABSTRACT: The effects of CO?-water-rock interactions on the mechanical properties of shale are essential for estimating the possibility of sequestrating CO? in shale reservoirs. In this study, uniaxial compressive strength (UCS) tests together with an acoustic emission (AE) system and SEM and EDS analysis were performed to investigate the mechanical properties and microstructural changes of black shales with different saturation times (10 days, 20 days and 30 days) in water dissoluted with gaseous/super-critical CO?. According to the experimental results, the values of UCS, Young's modulus and brittleness index decrease gradually with increasing saturation time in water with gaseous/super-critical CO?. Compared to samples without saturation, 30-day saturation causes reductions of 56.43% in UCS and 54.21% in Young's modulus for gaseous saturated samples, and 66.05% in UCS and 56.32% in Young's modulus for super-critical saturated samples, respectively. The brittleness index also decreases drastically from 84.3% for samples without saturation to 50.9% for samples saturated in water with gaseous CO?, to 47.9% for samples saturated in water with super-critical carbon dioxide (SC-CO?). SC-CO? causes a greater reduction of shale's mechanical properties. The crack propagation results obtained from the AE system show that longer saturation time produces higher peak cumulative AE energy. SEM images show that many pores occur when shale samples are saturated in water with gaseous/super-critical CO?. The EDS results show that CO?-water-rock interactions increase the percentages of C and Fe and decrease the percentages of Al and K on the surface of saturated samples when compared to samples without saturation.
SUBMITTER: Lyu Q
PROVIDER: S-EPMC5509274 | biostudies-literature | 2016 Aug
REPOSITORIES: biostudies-literature
ACCESS DATA