Project description:Coronary bioresorbable vascular scaffolds are a new appealing therapeutic option in interventional cardiology. The most used and studied is currently the Absorb BVS™. Its backbone is made of poly-L-lactide and coated by a thin layer of poly-D,L-lactide, it releases everolimus and is fully degraded to H2O and CO2 in 2-3 years. Absorb BVS™ seems to offer several theoretical advantages over metallic stent, as it gives temporary mechanical support to vessel wall without permanently caging it. Therefore, long-term endothelial function and structure are not affected. A possible future surgical revascularization is not compromised. Natural vasomotion in response to external stimuli is also recovered. Several observational and randomized trials have been published about BVS clinical outcomes. The main aim of this review is to carry out a systematic analysis about Absorb BVS™ studies, evaluating also the technical improvements of the Absorb GT1 BVS™.
Project description:Percutaneous coronary intervention (PCI) has undergone major advances including the evolution in stent technology, from bare metal stents (BMS), to their drug eluting counterparts, to the development of bioresorbable scaffolds (BRS). The primary notion of BRS was to facilitate complete vascular healing and restore normal endothelial function following the resorption of stent scaffold while providing equivalent mechanical properties of a metallic drug eluting stents (DES) in the earlier stages. BRS provide attractive physiologic advancements over the existing DES and have shown promising results in initial clinical studies albeit with small sample sizes. Their use has been primarily restricted to patients recruited in clinical trials with limited real-world applicability. Thus, data from larger randomised control trials is awaited. The major objective of this article is to review the evidence on BRS and identify their clinical applicability in current interventional practice.
Project description:Bioresorbable polymers have been studied for several decades as attractive candidates for promoting the advancement of medical science and bio-technology in modern society. In particular, with a well-defined architecture, bioresorbable polymers have prominent advantages over their bulk counterparts for applications in biomedical and implant devices, such as cell delivery, scaffolds for tissue engineering, and hydrogels as well as in the pharmaceutical fields. Biocompatible implant devices based on bioresorbable materials (for instance, bioresorbable polymers that combine the unique advantages of biocompability and easy handling) have emerged as a highly active field due to their promising applications in artificial implant systems and biomedical devices. In this paper, we report an approach to fabricate porous polycaprolactone (PCL) scaffolds using a 3D printing system. And its surface was treated to a hydrophilic surface using plasma treatment. Then, the aspirin and atorvastatin calcium salt mixture was dip coated onto the surface. The drug coating technology was used to deposit the drug material onto the scaffold surface. Our porous PCL scaffold was coated with aspirin and atorvastatin calcium salt to reduce the blood LDL cholesterol and restenosis. These results suggest that our approach may provide a promising scaffold for developing bioresorbable drug-delivery-biomaterials. We further demonstrate that our bioresorbable medical device can be used as vascular scaffolds to provide a wide range of applications for the design of medical devices.
Project description:BackgroundBRS represent a new approach to treating coronary artery disease. Beneficial properties of BRS regarding the restoration of vasomotility after resorption make them attractive devices in CTO revascularization. However, experience in this setting is limited.MethodsWe systematically searched Medline, Scholar, and Scopus for reports of at least 9 patients with CTO undergoing BRS implantation. Patients' and procedural characteristics were summarized. The primary outcome of interest was target lesion revascularization (TLR). Pooled estimates were calculated using a random-effects meta-analysis. The study protocol was registered in PROSPERO (CRD42017069322).ResultsThirteen reports for a total of 843 lesions with a median follow-up of 12 months (IQR 6-12) were included in the analysis. At short-term, the summary estimate rate of TLR was 2.6% (95% CI: 1 to 4%, I2 = 0%, P = 0.887) while at mid to long-term it was 3.8% (95% CI: 2 to 6%, I2 = 0%, P = 0.803). At long-term follow-up (≥12 months), the summary estimate rate of cardiac death was 1.1% (95% CI: 0 to 2%, I2 = 0%, P = 0.887). The summary estimate rates of scaffold thrombosis and clinical restenosis were respectively 0.9% (95% CI: 0 to 2%, I2 = 0%, P = 0.919) and 1.8% (95% CI: 0 to 4%, I2 = 0%, P = 0.448). Finally, the summary estimate rate of target vessel revascularization was 6.6% (95% CI: 0 to 11%, I2 = 0%, P = 0.04).ConclusionsImplantation of BRS in a population with CTO is feasible, although further longer-term outcome studies are necessary.
Project description:Evaluation of recurrent angina after percutaneous coronary interventions is challenging. Since bioresorbable vascular scaffolds (BVS) cause no artefacts in magnetic resonance imaging (MRI) due to their polylactate-based backbone, evaluation of vascular patency by MRI might allow for non-invasive assessment and triage of patients with suspected BVS failure.Patients with polylactate-based ABSORB-BVS in proximal coronary segments were examined with 3 Tesla MRI directly (baseline) and one year after implantation. For assessment of coronary patency, a high-resolution 3D spoiled gradient echo pulse sequence with fat-saturation, T2-preparation (TE: 40 ms), respiratory and end-diastolic cardiac gating, and a spatial resolution of (1.08 mm)3 was positioned parallel to the course of the vessel for bright blood imaging. In addition, a 3D navigator-gated T2-weighted variable flip angle turbo spin echo (TSE) sequence with dual-inversion recovery black-blood preparation and elliptical k-space coverage was applied with a voxel size of (1.14 mm)3. For quantitative evaluation lumen diameters of the scaffolded areas were measured in reformatted bright and black blood MR angiography data.11 patients with implantation of 16 BVS in the proximal coronary segments were included, of which none suffered from major adverse cardiac events during the one year follow up. Vascular patency in all segments implanted with BVS could be reliably assessed by MRI at baseline and after one year, whereas segments with metal stents could not be evaluated due to artefacts. Luminal diameter within the BVS remained constant during the one year period. One patient with atypical angina after BVS implantation was noninvasively evaluated showing a patent vessel, also confirmed by coronary angiography.Coronary MRI allows contrast-agent free and non-invasive assessment of vascular patency after ABSORB-BVS implantation. This approach might be supportive in the triage and improvement of diagnostic workflows in patients with postinterventional angina and scaffold implantation.German Register of Clinical Studies DRKS00007456.
Project description:Implantable polymeric biodegradable devices, such as biodegradable vascular stents or scaffolds, cannot be fully visualized using standard X-ray-based techniques, compromising their performance due to malposition after deployment. To address this challenge, we describe composites of methacrylated poly(1,12 dodecamethylene citrate) (mPDC) and MoS2 nanosheets to fabricate novel X-ray visible radiopaque and photocurable liquid polymer-ceramic composite (mPDC-MoS2). The composite was used as an ink with micro continuous liquid interface production (μCLIP) to fabricate bioresorbable vascular scaffolds (BVS). Prints exhibited excellent crimping and expansion mechanics without strut failures and, importantly, required X-ray visibility in air and muscle tissue. Notably, MoS2 nanosheets displayed physical degradation over time in a PBS environment, indicating the potential for producing bioresorbable devices. mPDC-MoS2 is a promising bioresorbable X-ray-visible composite material suitable for 3D printing medical devices, particularly vascular scaffolds or stents, that require non-invasive X-ray-based monitoring techniques for implantation and evaluation. This innovative composite system holds significant promise for the development of biocompatible and highly visible medical implants, potentially enhancing patient outcomes and reducing medical complications.
Project description:UNLABELLED:Innovations in drug-eluting stents (DES) have substantially reduced rates of in-segment restenosis and early stent thrombosis, improving clinical outcomes following percutaneous coronary interventions (PCI). However a fixed metallic implant in a vessel wall with restored patency and residual disease remains a precipitating factor for sustained local inflammation, in-stent neo-atherosclerosis and impaired vasomotor function increasing the risk for late complications attributed to late or very late stent thrombosis and late target lesion revascularization (TLR) (late catch-up). The quest for optimal coronary stenting continues by further innovations in stent design and by using biocompatible materials other than cobalt chromium, platinum chromium or stainless steel for engineering coronary implants. Bioresorbable scaffolds made of biodegradable polymers or biocorrodible metals with properties of transient vessel scaffolding, local drug-elution and future restoration of vessel anatomy, physiology and local hemodynamics have been recently developed. These devices have been utilized in selected clinical applications so far providing preliminary evidence of safety showing comparable performance with current generation drug-eluting stents (DES). Herein we provide a comprehensive overview of the current status of these technologies, we elaborate on the potential benefits of transient coronary scaffolds over permanent stents in the context of vascular reparation therapy, and we further focus on the evolving challenges these devices have to overcome to compete with current generation DES. CONDENSED ABSTRACT:: The quest for optimizing percutaneous coronary interventions continues by iterative innovations in device materials beyond cobalt chromium, platinum chromium or stainless steel for engineering coronary implants. Bioresorbable scaffolds made of biodegradable polymers or biocorrodible metals with properties of transient vessel scaffolding; local drug-elution and future restoration of vessel anatomy, physiology and local hemodynamics were recently developed. These devices have been utilized in selected clinical applications providing preliminary evidence of safety showing comparable intermediate term clinical outcomes with current generation drug-eluting stents.
Project description:ImportancePhysicians have been criticized for having an overly enthusiastic response to new device approvals, especially for novel technologies. However, to our knowledge, the rates of new product adoption and patterns of new device usage in clinical practice have not been well described.ObjectiveTo characterize the patterns of uptake of bioresorbable vascular scaffolds (BVS) within the United States following device approval and to describe changes in response to subsequent releases of data and US Food and Drug Administration (FDA) warnings.Design, setting, and participantsThis analysis of the uptake of BVS between January 2016 and June 2017 used CathPCI Registry data; all percutaneous coronary intervention (PCI) procedures with an implant of either a BVS or conventional stent were included. Data analysis was performed in October 2017.ExposuresImplant of BVS.Main outcomes and measuresThe primary outcome was monthly use of BVS in the United States. In addition, the characteristics of patients who received BVS and of hospitals that used BVS were assessed and comparisons of patient characteristics between BVS recipients and patients who were treated contemporaneously with metallic stents were made.ResultsOf 682 951 procedures, 471 064 (69.0%) were done in men, 587 301 (86.0%) were among white people, and the mean (SD) age of those undergoing procedures with BVS vs conventional stents was 62.6 (11.4) years vs 65.7 (11.9) years. Of these, 4265 procedures (0.6%) used BVS overall (after FDA approval of BVS). Procedures with implants of BVS occurred among patients with fewer comorbidities and lower-acuity presentations compared with procedures with implants of conventional stents. The patient characteristics for BVS use were not dissimilar to the inclusion criteria of the ABSORB III FDA approval trial, with notable differences based on trial eligibility (eg, excluding patients with myocardial infarctions). The maximum monthly use of BVS was 1.25% of all PCI procedures that occurred 90 days after FDA approval, but with site-to-site variability. Declines in use were observed coincident with the scientific presentation of adverse event data as well as FDA warnings.Conclusions and relevanceMost US physicians and hospitals were selective in their use of BVS, primarily using them in patients similar to those in the device's FDA approval trial. In addition, declines in use were evident in the subsequent month following the release of data that reported negative outcomes. These results illustrate an example of an appropriate physician response to adverse data updates and FDA warnings.