ABSTRACT: Neurocognition is a central characteristic of schizophrenia and other psychotic disorders. Identifying the pattern and severity of neurocognitive functioning during the "near-psychotic," clinical high-risk (CHR) state of psychosis is necessary to develop accurate risk factors for psychosis and more effective and potentially preventive treatments.To identify core neurocognitive dysfunctions associated with the CHR phase, measure the ability of neurocognitive tests to predict transition to psychosis, and determine if neurocognitive deficits are robust or explained by potential confounders.In this case-control study across 8 sites, baseline neurocognitive data were collected from January 2009 to April 2013 in the second phase of the North American Prodrome Longitudinal Study (NAPLS 2). The dates of analysis were August 2015 to August 2016. The setting was a consortium of 8 university-based, outpatient programs studying the psychosis prodrome in North America. Participants were 264 healthy controls (HCs) and 689 CHR individuals, aged 12 to 35 years.Neurocognitive associations with transition to psychosis and effects of medication on neurocognition. Nineteen neuropsychological tests and 4 factors derived from factor analysis were used: executive and visuospatial abilities, verbal abilities, attention and working memory abilities, and declarative memory abilities.This study included 264 HCs (137 male and 127 female) and 689 CHR participants (398 male and 291 female). In the HCs, 145 (54.9%) were white and 119 (45.1%) were not, whereas 397 CHR participants (57.6%) were white and 291 (42.3%) were not. In the HCs, 45 (17%) were of Hispanic origin, whereas 127 CHR participants (18.4%) were of Hispanic origin. The CHR individuals were significantly impaired compared with HCs on attention and working memory abilities and declarative memory abilities. The CHR converters had large deficits in attention and working memory abilities and declarative memory abilities (Cohen d, approximately 0.80) compared with controls and performed significantly worse on these dimensions than nonconverters (Cohen d, 0.28 and 0.48, respectively). These results were not accounted for by general cognitive ability or medications. In Cox proportional hazards regression, time to conversion in those who transitioned to psychosis was significantly predicted by high verbal (premorbid) abilities (??=?0.40; hazard ratio [HR], 1.48; 95% CI, 1.08-2.04; P?=?.02), impaired declarative memory abilities (??=?-0.87; HR, 0.42; 95% CI, 0.31-0.56; P?