Unknown

Dataset Information

0

Operating organic light-emitting diodes imaged by super-resolution spectroscopy.


ABSTRACT: Super-resolution stimulated emission depletion (STED) microscopy is adapted here for materials characterization that would not otherwise be possible. With the example of organic light-emitting diodes (OLEDs), spectral imaging with pixel-by-pixel wavelength discrimination allows us to resolve local-chain environment encoded in the spectral response of the semiconducting polymer, and correlate chain packing with local electroluminescence by using externally applied current as the excitation source. We observe nanoscopic defects that would be unresolvable by traditional microscopy. They are revealed in electroluminescence maps in operating OLEDs with 50?nm spatial resolution. We find that brightest emission comes from regions with more densely packed chains. Conventional microscopy of an operating OLED would lack the resolution needed to discriminate these features, while traditional methods to resolve nanoscale features generally cannot be performed when the device is operating. This points the way towards real-time analysis of materials design principles in devices as they actually operate.

SUBMITTER: King JT 

PROVIDER: S-EPMC5512612 | biostudies-literature | 2016 Jun

REPOSITORIES: biostudies-literature

altmetric image

Publications

Operating organic light-emitting diodes imaged by super-resolution spectroscopy.

King John T JT   Granick Steve S  

Nature communications 20160621


Super-resolution stimulated emission depletion (STED) microscopy is adapted here for materials characterization that would not otherwise be possible. With the example of organic light-emitting diodes (OLEDs), spectral imaging with pixel-by-pixel wavelength discrimination allows us to resolve local-chain environment encoded in the spectral response of the semiconducting polymer, and correlate chain packing with local electroluminescence by using externally applied current as the excitation source  ...[more]

Similar Datasets

| S-EPMC10721783 | biostudies-literature
| S-EPMC7474697 | biostudies-literature
| S-EPMC6796915 | biostudies-literature
| S-EPMC7820436 | biostudies-literature
| S-EPMC6645075 | biostudies-literature
| S-EPMC4346830 | biostudies-other
| S-EPMC327164 | biostudies-other
| S-EPMC6817475 | biostudies-literature
| S-EPMC5320488 | biostudies-literature
| S-EPMC8357948 | biostudies-literature