Habitat and indigenous gut microbes contribute to the plasticity of gut microbiome in oriental river prawn during rapid environmental change.
Ontology highlight
ABSTRACT: Growing evidence points out that the capacity of organisms to acclimate or adapt to new habitat conditions basically depends on their phenomic plasticity attributes, of which their gut commensal microbiota might be an essential impact factor. Especially in aquatic organisms, which are in direct and continual contact with the aquatic environment, the complex and dynamic microbiota have significant effects on health and development. However, an understanding of the relative contribution of internal sorting (host genetic) and colonization (environmental) processes is still unclear. To understand how microbial communities differ in response to rapid environmental change, we surveyed and studied the environmental and gut microbiota of native and habitat-exchanged shrimp (Macrobrachium nipponense) using 16S rRNA amplicon sequencing on the Illumina MiSeq platform. Corresponding with microbial diversity of their living water areas, the divergence in gut microbes of lake-to-river shrimp (CK) increased, while that of river-to-lake shrimp (KC) decreased. Importantly, among the candidate environment specific gut microbes in habitat-exchanged shrimp, over half of reads were associated with the indigenous bacteria in native shrimp gut, yet more candidates presented in CK may reflect the complexity of new environment. Our results suggest that shrimp gut microbiota has high plasticity when its host faces environmental changes, even over short timescales. Further, the changes in external environment might influence the gut microbiome not just by providing environment-associated microbes directly, but also by interfering with the composition of indigenous gut bacteria indirectly.
SUBMITTER: Chen CY
PROVIDER: S-EPMC5513549 | biostudies-literature | 2017
REPOSITORIES: biostudies-literature
ACCESS DATA