Unknown

Dataset Information

0

Deficiency of angiotensin-converting enzyme 2 causes deterioration of cognitive function.


ABSTRACT: The classical renin-angiotensin system (RAS), known as the angiotensin (Ang)-converting enzyme (ACE)/Ang II/Ang II type 1 (AT1) receptor axis, induces various organ damages including cognitive decline. On the other hand, the ACE2/Ang-(1-7)/Mas receptor axis has been highlighted as exerting antagonistic actions against the classical RAS axis in the cardiovascular system. However, the roles of the ACE2/Ang-(1-7)/Mas axis in cognitive function largely remain to be elucidated, and we therefore examined possible roles of ACE2 in cognitive function. Male, 10-week-old C57BL6 (wild type, WT) mice and ACE2 knockout (KO) mice were subjected to the Morris water maze task and Y maze test to evaluate cognitive function. ACE2KO mice exhibited significant impairment of cognitive function, compared with that in WT mice. Superoxide anion production increased in ACE2KO mice, with increased mRNA levels of NADPH oxidase subunit, p22phox, p40phox, p67phox, and gp91phox in the hippocampus of ACE2KO mice compared with WT mice. The protein level of SOD3 decreased in ACE2KO mice compared with WT mice. The AT1 receptor mRNA level in the hippocampus was higher in ACE2KO mice compared with WT mice. In contrast, the AT2 receptor mRNA level in the hippocampus did not differ between the two strains. Mas receptor mRNA was highly expressed in the hippocampus compared with the cortex. Brain-derived neurotrophic factor (BDNF) mRNA and protein levels were lower in the hippocampus in ACE2KO mice compared with WT mice. Taken together, ACE2 deficiency resulted in impaired cognitive function, probably at least in part because of enhanced oxidative stress and a decrease in BDNF.

SUBMITTER: Wang XL 

PROVIDER: S-EPMC5515001 | biostudies-literature | 2016

REPOSITORIES: biostudies-literature

altmetric image

Publications


The classical renin-angiotensin system (RAS), known as the angiotensin (Ang)-converting enzyme (ACE)/Ang II/Ang II type 1 (AT1) receptor axis, induces various organ damages including cognitive decline. On the other hand, the ACE2/Ang-(1-7)/Mas receptor axis has been highlighted as exerting antagonistic actions against the classical RAS axis in the cardiovascular system. However, the roles of the ACE2/Ang-(1-7)/Mas axis in cognitive function largely remain to be elucidated, and we therefore exami  ...[more]

Similar Datasets

| S-EPMC5998658 | biostudies-literature
| S-EPMC3733257 | biostudies-literature
| S-EPMC8361046 | biostudies-literature
| S-EPMC7150073 | biostudies-literature
| S-EPMC3160110 | biostudies-literature
| S-EPMC3934162 | biostudies-literature
| S-EPMC6483501 | biostudies-literature
| S-EPMC2926814 | biostudies-literature
| S-EPMC2788243 | biostudies-literature
| S-EPMC7129862 | biostudies-literature