A Bioengineered Peptide that Localizes to and Illuminates Medulloblastoma: A New Tool with Potential for Fluorescence-Guided Surgical Resection.
Ontology highlight
ABSTRACT: Tumors of the central nervous system are challenging to treat due to the limited effectiveness and associated toxicities of chemotherapy and radiation therapy. For tumors that can be removed surgically, extent of malignant tissue resection has been shown to correlate with disease progression, recurrence, and survival. Thus, improved technologies for real-time brain tumor imaging are critically needed as tools for guided surgical resection. We previously engineered a novel peptide that binds with high affinity and unique specificity to ?V?3, ?V?5, and ?5?1 integrins, which are present on tumor cells, and the vasculature of many cancers, including brain tumors. In the current study, we conjugated this engineered peptide to a near infrared fluorescent dye (Alexa Fluor 680), and used the resulting molecular probe for non-invasive whole body imaging of patient-derived medulloblastoma xenograft tumors implanted in the cerebellum of mice. The engineered peptide exhibited robust targeting and illumination of intracranial medulloblastoma following both intravenous and intraperitoneal injection routes. In contrast, a variant of the engineered peptide containing a scrambled integrin-binding sequence did not localize to brain tumors, demonstrating that tumor-targeting is driven by specific integrin interactions. Ex vivo imaging was used to confirm the presence of tumor and molecular probe localization to the cerebellar region. These results warrant further clinical development of the engineered peptide as a tool for image-guided resection of central nervous system tumors.
SUBMITTER: Ackerman SE
PROVIDER: S-EPMC5515084 | biostudies-literature | 2014
REPOSITORIES: biostudies-literature
ACCESS DATA