Unknown

Dataset Information

0

Parylene C topographic micropattern as a template for patterning PDMS and Polyacrylamide hydrogel.


ABSTRACT: Parylene C is a well-known polymer and it has been mainly employed as a protective layer for implantable electronics. In this paper, we propose a new approach to use Parylene C as a versatile template for patterning soft materials potentially applicable as scaffolds in cardiac tissue engineering (TE). Parylene C substrates were anisotropically patterned through standard lithographic process with hydrophilic channels separating raised hydrophobic strips. Ridges and grooves of the template are 10?µm width and depth ranging from 1 to 17?µm. Polydimethylsiloxane (PDMS) and Polyacrylamide (PAm) hydrogel have been chosen as soft polymers to be moulded. Thanks to their chemical and physical properties PDMS and PAm hydrogel mimic the extracellular matrix (ECM). PDMS was spin coated on micropatterned Parylene C obtaining composite substrates with 460?nm and 1.15?µm high grooves. The Young's modulus of the composite Parylene C/PDMS was evaluated and it was found to be almost half when compared to PDMS. PAm hydrogel was also printed using collagen coated micro-grooved Parylene C. Optical micrographs and fluorescence analysis show the successful topographic and protein pattern transfer on the hydrogel.

SUBMITTER: Sanzari I 

PROVIDER: S-EPMC5516021 | biostudies-literature | 2017 Jul

REPOSITORIES: biostudies-literature

altmetric image

Publications

Parylene C topographic micropattern as a template for patterning PDMS and Polyacrylamide hydrogel.

Sanzari Ilaria I   Callisti Mauro M   Grazia Antonio De A   Evans Daniel J DJ   Polcar Tomas T   Prodromakis Themistoklis T  

Scientific reports 20170718 1


Parylene C is a well-known polymer and it has been mainly employed as a protective layer for implantable electronics. In this paper, we propose a new approach to use Parylene C as a versatile template for patterning soft materials potentially applicable as scaffolds in cardiac tissue engineering (TE). Parylene C substrates were anisotropically patterned through standard lithographic process with hydrophilic channels separating raised hydrophobic strips. Ridges and grooves of the template are 10   ...[more]

Similar Datasets

| S-EPMC3651747 | biostudies-literature
| S-EPMC2838777 | biostudies-literature
| S-EPMC6187561 | biostudies-literature
| S-EPMC4718951 | biostudies-literature
| S-EPMC6592558 | biostudies-literature
| S-EPMC8402003 | biostudies-literature
| S-EPMC3447741 | biostudies-literature
| S-EPMC7052281 | biostudies-literature
| S-EPMC7482135 | biostudies-literature