Unknown

Dataset Information

0

An orthogonal single-molecule experiment reveals multiple-attempt dynamics of type IA topoisomerases.


ABSTRACT: Topoisomerases are enzymes that are involved in maintaining the topological state of cellular DNA. Their dynamic characteristics remain poorly understood despite numerous structural, biophysical and biochemical studies. Recent single-molecule experiments revealed that an important feature of the type IA topoisomerase mechanism is the presence of pauses between relaxation events. However, these experiments could not determine whether the protein remains DNA bound during the pauses or what relationship may exist between protein domain movements and topological changes in the DNA. By combining two orthogonal single-molecule techniques, we found that E. coli topoisomerase I constantly changes conformation when attempting to modify the topology of DNA, but succeeds in only a fraction of the attempts. Thus, its mechanism can be described as a series of DNA strand-passage attempts that culminate in a successful relaxation event.

SUBMITTER: Gunn KH 

PROVIDER: S-EPMC5516274 | biostudies-literature | 2017 May

REPOSITORIES: biostudies-literature

altmetric image

Publications

An orthogonal single-molecule experiment reveals multiple-attempt dynamics of type IA topoisomerases.

Gunn Kathryn H KH   Marko John F JF   Mondragón Alfonso A  

Nature structural & molecular biology 20170417 5


Topoisomerases are enzymes that are involved in maintaining the topological state of cellular DNA. Their dynamic characteristics remain poorly understood despite numerous structural, biophysical and biochemical studies. Recent single-molecule experiments revealed that an important feature of the type IA topoisomerase mechanism is the presence of pauses between relaxation events. However, these experiments could not determine whether the protein remains DNA bound during the pauses or what relatio  ...[more]

Similar Datasets

| S-EPMC7587558 | biostudies-literature
| S-EPMC2885172 | biostudies-literature
| S-EPMC7242696 | biostudies-literature
| S-EPMC1937519 | biostudies-other
| S-EPMC7823277 | biostudies-literature
| S-EPMC8191776 | biostudies-literature
| S-EPMC3462812 | biostudies-literature
| S-EPMC2518714 | biostudies-literature
| S-EPMC3780852 | biostudies-other
| S-EPMC5770380 | biostudies-literature