Unknown

Dataset Information

0

Reconstitution of calcium-mediated exocytosis of dense-core vesicles.


ABSTRACT: Regulated exocytosis is a process by which neurotransmitters, hormones, and secretory proteins are released from the cell in response to elevated levels of calcium. In cells, secretory vesicles are targeted to the plasma membrane, where they dock, undergo priming, and then fuse with the plasma membrane in response to calcium. The specific roles of essential proteins and how calcium regulates progression through these sequential steps are currently incompletely resolved. We have used purified neuroendocrine dense-core vesicles and artificial membranes to reconstruct in vitro the serial events that mimic SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor)-dependent membrane docking and fusion during exocytosis. Calcium recruits these vesicles to the target membrane aided by the protein CAPS (calcium-dependent activator protein for secretion), whereas synaptotagmin catalyzes calcium-dependent fusion; both processes are dependent on phosphatidylinositol 4,5-bisphosphate. The soluble proteins Munc18 and complexin-1 are necessary to arrest vesicles in a docked state in the absence of calcium, whereas CAPS and/or Munc13 are involved in priming the system for an efficient fusion reaction.

SUBMITTER: Kreutzberger AJB 

PROVIDER: S-EPMC5517108 | biostudies-literature | 2017 Jul

REPOSITORIES: biostudies-literature

altmetric image

Publications

Reconstitution of calcium-mediated exocytosis of dense-core vesicles.

Kreutzberger Alex J B AJB   Kiessling Volker V   Liang Binyong B   Seelheim Patrick P   Jakhanwal Shrutee S   Jahn Reinhard R   Castle J David JD   Tamm Lukas K LK  

Science advances 20170719 7


Regulated exocytosis is a process by which neurotransmitters, hormones, and secretory proteins are released from the cell in response to elevated levels of calcium. In cells, secretory vesicles are targeted to the plasma membrane, where they dock, undergo priming, and then fuse with the plasma membrane in response to calcium. The specific roles of essential proteins and how calcium regulates progression through these sequential steps are currently incompletely resolved. We have used purified neu  ...[more]

Similar Datasets

| S-EPMC1383564 | biostudies-literature
| S-EPMC4267856 | biostudies-literature
| S-EPMC5199237 | biostudies-literature
| S-EPMC5372467 | biostudies-literature
| S-EPMC356992 | biostudies-literature
| S-EPMC3409754 | biostudies-literature
| S-EPMC9910497 | biostudies-literature
| S-EPMC4750925 | biostudies-literature
| S-EPMC5814729 | biostudies-literature
| S-EPMC135591 | biostudies-literature