Unknown

Dataset Information

0

PTEN/FOXO3/AKT pathway regulates cell death and mediates morphogenetic differentiation of Colorectal Cancer Cells under Simulated Microgravity.


ABSTRACT: Gravity is a major physical factor determining the stress and strain around cells. Both in space experiments and ground simulation, change in gravity impacts the viability and function of various types of cells as well as in vivo conditions. Cancer cells have been shown to die under microgravity. This can be exploited for better understanding of the biology and identification of novel avenues for therapeutic intervention. Here, we described the effect of microgravity simulated using Rotational Cell Culture System-High Aspect Ratio Vessel (RCCS-HARV) on the viability and morphological changes of colorectal cancer cells. We observed DLD1, HCT116 and SW620 cells die through apoptosis under simulated microgravity (SM). Gene expression analysis on DLD1 cells showed upregulation of tumor suppressors PTEN and FOXO3; leading to AKT downregulation and further induction of apoptosis, through upregulation of CDK inhibitors CDKN2B, CDKN2D. SM induced cell clumps had elevated hypoxia and mitochondrial membrane potential that led to adaptive responses like morphogenetic changes, migration and deregulated autophagy, when shifted to normal culture conditions. This can be exploited to understand the three-dimensional (3D) biology of cancer in the aspect of stress response. This study highlights the regulation of cell function and viability under microgravity through PTEN/FOXO3/AKT pathway.

SUBMITTER: Arun RP 

PROVIDER: S-EPMC5519599 | biostudies-literature | 2017 Jul

REPOSITORIES: biostudies-literature

altmetric image

Publications

PTEN/FOXO3/AKT pathway regulates cell death and mediates morphogenetic differentiation of Colorectal Cancer Cells under Simulated Microgravity.

Arun Raj Pranap RP   Sivanesan Divya D   Vidyasekar Prasanna P   Verma Rama Shanker RS  

Scientific reports 20170720 1


Gravity is a major physical factor determining the stress and strain around cells. Both in space experiments and ground simulation, change in gravity impacts the viability and function of various types of cells as well as in vivo conditions. Cancer cells have been shown to die under microgravity. This can be exploited for better understanding of the biology and identification of novel avenues for therapeutic intervention. Here, we described the effect of microgravity simulated using Rotational C  ...[more]

Similar Datasets

| S-EPMC5966377 | biostudies-literature
| S-EPMC3651164 | biostudies-literature
| S-EPMC6797799 | biostudies-literature
| S-EPMC6928290 | biostudies-literature
| S-EPMC4685444 | biostudies-literature
| S-EPMC7767150 | biostudies-literature
| S-EPMC3886541 | biostudies-literature
2006-12-31 | GSE4658 | GEO
| S-EPMC8584780 | biostudies-literature
2024-09-11 | GSE271642 | GEO