Unknown

Dataset Information

0

6-month aortic valve implantation of an off-the-shelf tissue-engineered valve in sheep.


ABSTRACT: Diseased aortic valves often require replacement, with over 30% of the current aortic valve surgeries performed in patients who will outlive a bioprosthetic valve. While many promising tissue-engineered valves have been created in the lab using the cell-seeded polymeric scaffold paradigm, none have been successfully tested long-term in the aortic position of a pre-clinical model. The high pressure gradients and dynamic flow across the aortic valve leaflets require engineering a tissue that has the strength and compliance to withstand high mechanical demand without compromising normal hemodynamics. A long-term preclinical evaluation of an off-the-shelf tissue-engineered aortic valve in the sheep model is presented here. The valves were made from a tube of decellularized cell-produced matrix mounted on a frame. The engineered matrix is primarily composed of collagen, with strength and organization comparable to native valve leaflets. In vitro testing showed excellent hemodynamic performance with low regurgitation, low systolic pressure gradient, and large orifice area. The implanted valves showed large-scale leaflet motion and maintained effective orifice area throughout the duration of the 6-month implant, with no calcification. After 24 weeks implantation (over 17 million cycles), the valves showed no change in tensile mechanical properties. In addition, histology and DNA quantitation showed repopulation of the engineered matrix with interstitial-like cells and endothelialization. New extracellular matrix deposition, including elastin, further demonstrates positive tissue remodeling in addition to recellularization and valve function. Long-term implantation in the sheep model resulted in functionality, matrix remodeling, and recellularization, unprecedented results for a tissue-engineered aortic valve.

SUBMITTER: Syedain Z 

PROVIDER: S-EPMC5520964 | biostudies-literature | 2015 Dec

REPOSITORIES: biostudies-literature

altmetric image

Publications

6-month aortic valve implantation of an off-the-shelf tissue-engineered valve in sheep.

Syedain Zeeshan Z   Reimer Jay J   Schmidt Jillian J   Lahti Matthew M   Berry James J   Bianco Richard R   Tranquillo Robert T RT  

Biomaterials 20150911


Diseased aortic valves often require replacement, with over 30% of the current aortic valve surgeries performed in patients who will outlive a bioprosthetic valve. While many promising tissue-engineered valves have been created in the lab using the cell-seeded polymeric scaffold paradigm, none have been successfully tested long-term in the aortic position of a pre-clinical model. The high pressure gradients and dynamic flow across the aortic valve leaflets require engineering a tissue that has t  ...[more]

Similar Datasets

| S-EPMC5064828 | biostudies-literature
| S-EPMC5479725 | biostudies-literature
| S-EPMC8183662 | biostudies-literature
| S-EPMC6279805 | biostudies-other
| S-EPMC5852276 | biostudies-literature
| S-EPMC3014148 | biostudies-other
| S-EPMC3686371 | biostudies-other
| S-EPMC10229261 | biostudies-literature
| S-EPMC7047047 | biostudies-literature
| S-EPMC6242924 | biostudies-literature