Unknown

Dataset Information

0

Nucleus-Translocated ACSS2 Promotes Gene Transcription for Lysosomal Biogenesis and Autophagy.


ABSTRACT: Overcoming metabolic stress is a critical step in tumor growth. Acetyl coenzyme A (acetyl-CoA) generated from glucose and acetate uptake is important for histone acetylation and gene expression. However, how acetyl-CoA is produced under nutritional stress is unclear. We demonstrate here that glucose deprivation results in AMP-activated protein kinase (AMPK)-mediated acetyl-CoA synthetase 2 (ACSS2) phosphorylation at S659, which exposed the nuclear localization signal of ACSS2 for importin ?5 binding and nuclear translocation. In the nucleus, ACSS2 binds to transcription factor EB and translocates to lysosomal and autophagy gene promoter regions, where ACSS2 incorporates acetate generated from histone acetylation turnover to locally produce acetyl-CoA for histone H3 acetylation in these regions and promote lysosomal biogenesis, autophagy, cell survival, and brain tumorigenesis. In addition, ACSS2 S659 phosphorylation positively correlates with AMPK activity in glioma specimens and grades of glioma malignancy. These results underscore the significance of nuclear ACSS2-mediated histone acetylation in maintaining cell homeostasis and tumor development.

SUBMITTER: Li X 

PROVIDER: S-EPMC5521213 | biostudies-literature | 2017 Jun

REPOSITORIES: biostudies-literature

altmetric image

Publications

Nucleus-Translocated ACSS2 Promotes Gene Transcription for Lysosomal Biogenesis and Autophagy.

Li Xinjian X   Yu Willie W   Qian Xu X   Xia Yan Y   Zheng Yanhua Y   Lee Jong-Ho JH   Li Wei W   Lyu Jianxin J   Rao Ganesh G   Zhang Xiaochun X   Qian Chao-Nan CN   Rozen Steven G SG   Jiang Tao T   Lu Zhimin Z  

Molecular cell 20170525 5


Overcoming metabolic stress is a critical step in tumor growth. Acetyl coenzyme A (acetyl-CoA) generated from glucose and acetate uptake is important for histone acetylation and gene expression. However, how acetyl-CoA is produced under nutritional stress is unclear. We demonstrate here that glucose deprivation results in AMP-activated protein kinase (AMPK)-mediated acetyl-CoA synthetase 2 (ACSS2) phosphorylation at S659, which exposed the nuclear localization signal of ACSS2 for importin α5 bin  ...[more]

Similar Datasets

| S-EPMC3638014 | biostudies-literature
| S-EPMC8726608 | biostudies-literature
| S-EPMC5467270 | biostudies-literature
| S-EPMC7853097 | biostudies-literature
| S-EPMC8386603 | biostudies-literature
| S-EPMC6220341 | biostudies-literature
| S-EPMC3770333 | biostudies-other
| S-SCDT-EMM-2017-08799 | biostudies-other
| S-EPMC4646453 | biostudies-literature