Unknown

Dataset Information

0

Inhibiting translesion DNA synthesis as an approach to combat drug resistance to DNA damaging agents.


ABSTRACT: Anti-cancer agents exert therapeutic effects by damaging DNA. Unfortunately, DNA polymerases can effectively replicate the formed DNA lesions to cause drug resistance and create more aggressive cancers. To understand this process at the cellular level, we developed an artificial nucleoside that visualizes the replication of damaged DNA to identify cells that acquire drug resistance through this mechanism. Visualization is achieved using "click" chemistry to covalently attach azide-containing fluorophores to the ethynyl group present on the nucleoside analog after its incorporation opposite damaged DNA. Flow cytometry and microscopy techniques demonstrate that the extent of nucleotide incorporation into genomic DNA is enhanced by treatment with DNA damaging agents. In addition, this nucleoside analog inhibits translesion DNA synthesis and synergizes the therapeutic activity of certain anti-cancer agents such as temozolomide. The combined diagnostic and therapeutic activities of this synthetic nucleoside analog represent a new paradigm in personalized medicine.

SUBMITTER: Choi JS 

PROVIDER: S-EPMC5522278 | biostudies-literature | 2017 Jun

REPOSITORIES: biostudies-literature

altmetric image

Publications

Inhibiting translesion DNA synthesis as an approach to combat drug resistance to DNA damaging agents.

Choi Jung-Suk JS   Kim Seol S   Motea Edward E   Berdis Anthony A  

Oncotarget 20170601 25


Anti-cancer agents exert therapeutic effects by damaging DNA. Unfortunately, DNA polymerases can effectively replicate the formed DNA lesions to cause drug resistance and create more aggressive cancers. To understand this process at the cellular level, we developed an artificial nucleoside that visualizes the replication of damaged DNA to identify cells that acquire drug resistance through this mechanism. Visualization is achieved using "click" chemistry to covalently attach azide-containing flu  ...[more]

Similar Datasets

| S-EPMC5710876 | biostudies-literature
2008-09-23 | GSE10313 | GEO
| S-EPMC9817522 | biostudies-literature
| S-EPMC1189734 | biostudies-literature
| S-EPMC4231548 | biostudies-literature
| S-EPMC6295477 | biostudies-other
| S-EPMC5788409 | biostudies-literature
| S-EPMC9000072 | biostudies-literature
| S-EPMC7573464 | biostudies-literature
| S-EPMC8501983 | biostudies-literature