Project description:Abnormal iron metabolism is observed in many neurodegenerative diseases, however, only two have shown dysregulation of brain iron homeostasis as the primary cause of neurodegeneration. Herein, we review one of these - hereditary ferritinopathy (HF) or neuroferritinopathy, which is an autosomal dominant, adult onset degenerative disease caused by mutations in the ferritin light chain (FTL) gene. HF has a clinical phenotype characterized by a progressive movement disorder, behavioral disturbances, and cognitive impairment. The main pathologic findings are cystic cavitation of the basal ganglia, the presence of ferritin inclusion bodies (IBs), and substantial iron deposition. Mutant FTL subunits have altered sequence and length but assemble into soluble 24-mers that are ultrastructurally indistinguishable from those of the wild type. Crystallography shows substantial localized disruption of the normally tiny 4-fold pores between the ferritin subunits because of unraveling of the C-termini into multiple polypeptide conformations. This structural alteration causes attenuated net iron incorporation leading to cellular iron mishandling, ferritin aggregation, and oxidative damage at physiological concentrations of iron and ascorbate. A transgenic murine model parallels several features of HF, including a progressive neurological phenotype, ferritin IB formation, and misregulation of iron metabolism. These studies provide a working hypothesis for the pathogenesis of HF by implicating (1) a loss of normal ferritin function that triggers iron accumulation and overproduction of ferritin polypeptides, and (2) a gain of toxic function through radical production, ferritin aggregation, and oxidative stress. Importantly, the finding that ferritin aggregation can be reversed by iron chelators and oxidative damage can be inhibited by radical trapping may be used for clinical investigation. This work provides new insights into the role of abnormal iron metabolism in neurodegeneration.
Project description:Seizure-driven brain damage in epilepsy accumulates over time, especially in the hippocampus, which can lead to sclerosis, cognitive decline, and death. Excitotoxicity is the prevalent model to explain ictal neurodegeneration. Current labeling technologies cannot distinguish between excitotoxicity and hypoxia, however, because they share common molecular mechanisms. This leaves open the possibility that undetected ischemic hypoxia, due to ictal blood flow restriction, could contribute to neurodegeneration previously ascribed to excitotoxicity. We tested this possibility with Confocal Laser Endomicroscopy (CLE) and novel stereological analyses in several models of epileptic mice. We found a higher number and magnitude of NG2+ mural-cell mediated capillary constrictions in the hippocampus of epileptic mice than in that of normal mice, in addition to spatial coupling between capillary constrictions and oxidative stressed neurons and neurodegeneration. These results reveal a role for hypoxia driven by capillary blood flow restriction in ictal neurodegeneration.
Project description:Spongiform neurodegeneration is characterized by the appearance of vacuoles throughout the central nervous system. It has many potential causes, but the underlying cellular mechanisms are not well understood. Mice lacking the E3 ubiquitin ligase Mahogunin Ring Finger-1 (MGRN1) develop age-dependent spongiform encephalopathy. We identified an interaction between a "PSAP" motif in MGRN1 and the ubiquitin E2 variant (UEV) domain of TSG101, a component of the endosomal sorting complex required for transport I (ESCRT-I), and demonstrate that MGRN1 multimonoubiquitinates TSG101. We examined the in vivo consequences of loss of MGRN1 on TSG101 expression and function in the mouse brain. The pattern of TSG101 ubiquitination differed in the brains of wild-type mice and Mgrn1 null mutant mice: at 1 month of age, null mutant mice had less ubiquitinated TSG101, while in adults, mutant mice had more ubiquitinated, insoluble TSG101 than wild-type mice. There was an associated increase in epidermal growth factor receptor (EGFR) levels in mutant brains. These results suggest that loss of MGRN1 promotes ubiquitination of TSG101 by other E3s and may prevent its disassociation from endosomal membranes or cause it to form insoluble aggregates. Our data implicate loss of normal TSG101 function in endo-lysosomal trafficking in the pathogenesis of spongiform neurodegeneration in Mgrn1 null mutant mice.
Project description:Alzheimer's disease (AD) is a major adult-onset neurodegenerative condition with no available treatment. Compelling reports point amyloid-β (Aβ) as the main etiologic agent that triggers AD. Although there is extensive evidence of detrimental crosstalk between Aβ and microglia that contributes to neuroinflammation in AD, the exact mechanism leading to neuron death remains unknown. Using postmortem human AD brain tissue, we show that Aβ pathology is associated with the necroptosis effector pMLKL. Moreover, we found that the burden of Aβ oligomers (Aβo) correlates with the expression of key markers of necroptosis activation. Additionally, inhibition of necroptosis by pharmacological or genetic means, reduce neurodegeneration and memory impairment triggered by Aβo in mice. Since microglial activation is emerging as a central driver for AD pathogenesis, we then tested the contribution of microglia to the mechanism of Aβo-mediated necroptosis activation in neurons. Using an in vitro model, we show that conditioned medium from Aβo-stimulated microglia elicited necroptosis in neurons through activation of TNF-α signaling, triggering extensive neurodegeneration. Notably, necroptosis inhibition provided significant neuronal protection. Together, these findings suggest that Aβo-mediated microglia stimulation in AD contributes to necroptosis activation in neurons and neurodegeneration. As necroptosis is a druggable degenerative mechanism, our findings might have important therapeutic implications to prevent the progression of AD.
Project description:Lack of a preclinical model of primary dystonia that exhibits dystonic-like twisting movements has stymied identification of the cellular and molecular underpinnings of the disease. The classical familial form of primary dystonia is caused by the DYT1 (ΔE) mutation in TOR1A, which encodes torsinA, AAA⁺ ATPase resident in the lumen of the endoplasmic reticular/nuclear envelope. Here, we found that conditional deletion of Tor1a in the CNS (nestin-Cre Tor1a(flox/-)) or isolated CNS expression of DYT1 mutant torsinA (nestin-Cre Tor1a(flox/ΔE)) causes striking abnormal twisting movements. These animals developed perinuclear accumulation of ubiquitin and the E3 ubiquitin ligase HRD1 in discrete sensorimotor regions, followed by neurodegeneration that was substantially milder in nestin-Cre Tor1a(flox/ΔE) compared with nestin-Cre Tor1a(flox/-) animals. Similar to the neurodevelopmental onset of DYT1 dystonia in humans, the behavioral and histopathological abnormalities emerged and became fixed during CNS maturation in the murine models. Our results establish a genetic model of primary dystonia that is overtly symptomatic, and link torsinA hypofunction to neurodegeneration and abnormal twisting movements. These findings provide a cellular and molecular framework for how impaired torsinA function selectively disrupts neural circuits and raise the possibility that discrete foci of neurodegeneration may contribute to the pathogenesis of DYT1 dystonia.
Project description:Aggregation of alpha-synuclein (alpha-syn), a process that generates oligomeric intermediates, is a common pathological feature of several neurodegenerative disorders. Despite the potential importance of the oligomeric alpha-syn intermediates in neuron function, their biochemical properties and pathobiological functions in vivo remain vastly unknown. Here we used two-dimensional analytical separation and an array of biochemical and cell-based assays to characterize alpha-syn oligomers that are present in the nervous system of A53T alpha-syn transgenic mice. The most prominent species identified were 53 A detergent-soluble oligomers, which preceded neurological symptom onset, and were found at equivalent amounts in regions containing alpha-syn inclusions as well as histologically unaffected regions. These oligomers were resistant to SDS, heat, and urea but were sensitive to proteinase-K digestion. Although the oligomers shared similar basic biochemical properties, those obtained from inclusion-bearing regions were prominently reactive to antibodies that recognize oxidized alpha-syn oligomers, significantly accelerated aggregation of alpha-syn in vitro, and caused primary cortical neuron degeneration. In contrast, oligomers obtained from non-inclusion-bearing regions were not toxic and delayed the in vitro formation of alpha-syn fibrils. These data indicate that specific conformations of alpha-syn oligomers are present in distinct brain regions of A53T alpha-syn transgenic mice. The contribution of these oligomers to the development of neuron dysfunction appears to be independent of their absolute quantities and basic biochemical properties but is dictated by the composition and conformation of the intermediates as well as unrecognized brain-region-specific intrinsic factors.
Project description:Pathogenic variants in WDR45 on chromosome Xp11 cause neurodegenerative disorder beta-propeller protein-associated neurodegeneration (BPAN). Currently, there is no effective therapy for BPAN. Here we report a 17-year-old female patient with BPAN and show that antisense oligonucleotide (ASO) was effective in vitro. The patient had developmental delay and later showed extrapyramidal signs since the age of 15 years. MRI findings showed iron deposition in the globus pallidus and substantia nigra on T2 MRI. Whole genome sequencing and RNA sequencing revealed generation of pseudoexon due to inclusion of intronic sequences triggered by an intronic variant that is remote from the exon-intron junction: WDR45 (OMIM #300526) chrX(GRCh37):g.48935143G > C, (NM_007075.4:c.235 + 159C > G). We recapitulated the exonization of intron sequences by a mini-gene assay and further sought antisense oligonucleotide that induce pseudoexon skipping using our recently developed, a dual fluorescent splicing reporter system that encodes two fluorescent proteins, mCherry, a transfection marker designed to facilitate evaluation of exon skipping and split eGFP, a splicing reaction marker. The results showed that the 24-base ASO was the strongest inducer of pseudoexon skipping. Our data presented here have provided supportive evidence for in vivo preclinical studies.
Project description:Neurons have high plasticity in developmental and juvenile stages that decreases in adulthood. Mitochondrial dynamics are highly important in neurons to maintain normal function. To compare dependency on mitochondrial dynamics in juvenile and adult stages, we generated a mouse model capable of selective timing of the expression of a mutant of the mitochondrial fusion factor Mitofusin 2 (MFN2). Mutant expression in the juvenile stage had lethal effects. Contrastingly, abnormalities did not manifest until 150 d after mutant expression during adulthood. After this silent 150 d period, progressive neurodegeneration, abnormal behaviors, and learning and memory deficits similar to those seen in human neurodegenerative diseases were observed. This indicates that abnormal neuronal mitochondrial dynamics seriously affect survival during early life stages and can also significantly damage brain function after maturation. Our findings highlight the need to consider the timing of disease onset in mimicking human neurodegenerative diseases.SIGNIFICANCE STATEMENT To compare the dependency on mitochondrial dynamics in neurons in juvenile and adult stages, we generated a mouse model expressing a mutant of the mitochondrial fusion factor MFN2 in an arbitrary timing. Juvenile expression of the mutant showed acute and severe phenotypes and had lethal effects; however, post-adult expression induced delayed but progressive phenotypes resembling those found in human neurodegenerative diseases. Our results indicate that abnormal neuronal mitochondrial dynamics seriously affect survival during early life stages and can also significantly damage brain function after maturation. This strongly suggests that the timing of expression should be considered when establishing an animal model that closely resembles human neurodegenerative diseases.
Project description:Most neurodegenerative diseases such as Alzheimer's disease are proteinopathies linked to the toxicity of amyloid oligomers. Treatments to delay or cure these diseases are lacking. Using budding yeast, we report that the natural lipid tripentadecanoin induces expression of the nitric oxide oxidoreductase Yhb1 to prevent the formation of protein aggregates during aging and extends replicative lifespan. In mammals, tripentadecanoin induces expression of the Yhb1 orthologue, neuroglobin, to protect neurons against amyloid toxicity. Tripentadecanoin also rescues photoreceptors in a mouse model of retinal degeneration and retinal ganglion cells in a Rhesus monkey model of optic atrophy. Together, we propose that tripentadecanoin affects p-bodies to induce neuroglobin expression and offers a potential treatment for proteinopathies and retinal neurodegeneration.
Project description:Pseudosymmetric hetero-oligomers with three or more unique subunits with overall structural (but not sequence) symmetry play key roles in biology, and systematic approaches for generating such proteins de novo would provide new routes to controlling cell signaling and designing complex protein materials. However, the de novo design of protein hetero-oligomers with three or more distinct chains with nearly identical structures is a challenging unsolved problem because it requires the accurate design of multiple protein-protein interfaces simultaneously. Here, we describe a divide-and-conquer approach that breaks the multiple-interface design challenge into a set of more tractable symmetric single-interface redesign tasks, followed by structural recombination of the validated homo-oligomers into pseudosymmetric hetero-oligomers. Starting from de novo designed circular homo-oligomers composed of 9 or 24 tandemly repeated units, we redesigned the inter-subunit interfaces to generate 19 new homo-oligomers and structurally recombined them to make 24 new hetero-oligomers, including ABC heterotrimers, A2B2 heterotetramers, and A3B3 and A2B2C2 heterohexamers which assemble with high structural specificity. The symmetric homo-oligomers and pseudosymmetric hetero-oligomers generated for each system have identical or nearly identical backbones, and hence are ideal building blocks for generating and functionalizing larger symmetric and pseudosymmetric assemblies.