Unknown

Dataset Information

0

Physiological and transcriptome analysis of He-Ne laser pretreated wheat seedlings in response to drought stress.


ABSTRACT: Drought stress is a serious problem worldwide that reduces crop productivity. The laser has been shown to play a positive physiological role in enhancing plant seedlings tolerance to various abiotic stresses. However, little information is available about the molecular mechanism of He-Ne laser irradiation induced physiological changes for wheat adapting to drought conditions. Here, we performed a large-scale transcriptome sequencing to determine the molecular roles of He-Ne laser pretreated wheat seedlings under drought stress. There were 98.822 transcripts identified, and, among them, 820 transcripts were found to be differentially expressed in He-Ne laser pretreated wheat seedlings under drought stress compared with drought stress alone. Furthermore, most representative transcripts related to photosynthesis, nutrient uptake and transport, homeostasis control of reactive oxygen species and transcriptional regulation were expressed predominantly in He-Ne laser pretreated wheat seedlings. Thus, the up-regulated physiological processes of photosynthesis, antioxidation and osmotic accumulation because of the modified expressions of the related genes could contribute to the enhanced drought tolerance induced by He-Ne laser pretreatment. These findings will expand our understanding of the complex molecular events associated with drought tolerance conferred by laser irradiation in wheat and provide abundant genetic resources for future studies on plant adaptability to environmental stresses.

SUBMITTER: Qiu Z 

PROVIDER: S-EPMC5522386 | biostudies-literature | 2017 Jul

REPOSITORIES: biostudies-literature

altmetric image

Publications

Physiological and transcriptome analysis of He-Ne laser pretreated wheat seedlings in response to drought stress.

Qiu Zongbo Z   Yuan Mengmeng M   He Yanyan Y   Li Yongfang Y   Zhang Liang L  

Scientific reports 20170721 1


Drought stress is a serious problem worldwide that reduces crop productivity. The laser has been shown to play a positive physiological role in enhancing plant seedlings tolerance to various abiotic stresses. However, little information is available about the molecular mechanism of He-Ne laser irradiation induced physiological changes for wheat adapting to drought conditions. Here, we performed a large-scale transcriptome sequencing to determine the molecular roles of He-Ne laser pretreated whea  ...[more]

Similar Datasets

| S-EPMC6524375 | biostudies-literature
| S-EPMC10406934 | biostudies-literature
| S-EPMC10651932 | biostudies-literature
| S-EPMC6930268 | biostudies-literature
| S-EPMC6611040 | biostudies-literature
| S-EPMC10935782 | biostudies-literature
| S-EPMC6888631 | biostudies-literature
| S-EPMC6919619 | biostudies-literature
| S-EPMC7560863 | biostudies-literature
| S-EPMC6509841 | biostudies-literature