Imaging of lipids in rat heart by MALDI-MS with silver nanoparticles.
Ontology highlight
ABSTRACT: Lipids are a major component of heart tissue and perform several important functions such as energy storage, signaling, and as building blocks of biological membranes. The heart lipidome is quite diverse consisting of glycerophospholipids such as phosphatidylcholines (PCs), phosphatidylethanolamines (PEs), phosphatidylinositols (PIs), phosphatidylglycerols (PGs), cardiolipins (CLs), and glycerolipids, mainly triacylglycerols (TAGs). In this study, mass spectrometry imaging (MSI) enabled by matrix implantation of ionized silver nanoparticles (AgNP) was used to map several classes of lipids in heart tissue. The use of AgNP matrix implantation was motivated by our previous work showing that implantation doses of only 10(14)/cm(2) of 2 nm gold nanoparticulates into the first 10 nm of the near surface of the tissue enabled detection of most brain lipids (including neutral lipid species such as cerebrosides) more efficiently than traditional organic MALDI matrices. Herein, a similar implantation of 500 eV AgNP(-) across the entire heart tissue section results in a quick, reproducible, solvent-free, uniform matrix concentration of 6 nm AgNP residing near the tissue surface. MALDI-MSI analysis of either positive or negative ions produce high-quality images of several heart lipid species. In negative ion mode, 24 lipid species [16 PEs, 4 PIs, 1 PG, 1 CL, 2 sphingomyelins (SMs)] were imaged. Positive ion images were also obtained from 29 lipid species (10 PCs, 5 PEs, 5 SMs, 9 TAGs) with the TAG species being heavily concentrated in vascular regions of the heart.
SUBMITTER: Jackson SN
PROVIDER: S-EPMC5523126 | biostudies-literature | 2014 Feb
REPOSITORIES: biostudies-literature
ACCESS DATA