Unknown

Dataset Information

0

Community detection in sequence similarity networks based on attribute clustering.


ABSTRACT: Networks are powerful tools for the presentation and analysis of interactions in multi-component systems. A commonly studied mesoscopic feature of networks is their community structure, which arises from grouping together similar nodes into one community and dissimilar nodes into separate communities. Here, the community structure of protein sequence similarity networks is determined with a new method: Attribute Clustering Dependent Communities (ACDC). Sequence similarity has hitherto typically been quantified by the alignment score or its expectation value. However, pair alignments with the same score or expectation value cannot thus be differentiated. To overcome this deficiency, the method constructs, for pair alignments, an extended alignment metric, the link attribute vector, which includes the score and other alignment characteristics. Rescaling components of the attribute vectors qualitatively identifies a systematic variation of sequence similarity within protein superfamilies. The problem of community detection is then mapped to clustering the link attribute vectors, selection of an optimal subset of links and community structure refinement based on the partition density of the network. ACDC-predicted communities are found to be in good agreement with gold standard sequence databases for which the "ground truth" community structures (or families) are known. ACDC is therefore a community detection method for sequence similarity networks based entirely on pair similarity information. A serial implementation of ACDC is available from https://cmb.ornl.gov/resources/developments.

SUBMITTER: Chowdhary J 

PROVIDER: S-EPMC5524321 | biostudies-literature | 2017

REPOSITORIES: biostudies-literature

altmetric image

Publications

Community detection in sequence similarity networks based on attribute clustering.

Chowdhary Janamejaya J   Löffler Frank E FE   Smith Jeremy C JC  

PloS one 20170724 7


Networks are powerful tools for the presentation and analysis of interactions in multi-component systems. A commonly studied mesoscopic feature of networks is their community structure, which arises from grouping together similar nodes into one community and dissimilar nodes into separate communities. Here, the community structure of protein sequence similarity networks is determined with a new method: Attribute Clustering Dependent Communities (ACDC). Sequence similarity has hitherto typically  ...[more]

Similar Datasets

| S-EPMC6554434 | biostudies-literature
| S-EPMC8261288 | biostudies-literature
| S-EPMC1261163 | biostudies-literature
| S-EPMC8969259 | biostudies-literature
| S-EPMC8709282 | biostudies-literature
| S-EPMC6416296 | biostudies-literature
| S-EPMC6454479 | biostudies-literature
| S-EPMC8559714 | biostudies-literature
| S-EPMC5207651 | biostudies-literature
| S-EPMC7446192 | biostudies-literature