Unknown

Dataset Information

0

A self-supporting bimetallic Au@Pt core-shell nanoparticle electrocatalyst for the synergistic enhancement of methanol oxidation.


ABSTRACT: The morphology of Pt-Au bimetal nanostructures plays an important role in enhancing the catalytic capability, catalytic stability and utilization efficiency of the platinum. We designed and successfully prepared Au@Pt nanoparticles (NPs) through an economical, surfactant-free and efficient method of seed-mediated growth. The Au@Pt NPs displayed electrochemical performances superior to those of commercial Pt/C catalysts because their agglomeration was prevented and exhibited better long-term stability with respect to methanol oxidation in acidic media by efficiently removing intermediates. Among the obtained Au@Pt NPs, Au90@Pt10 NPs exhibited the most significantly enhanced catalytic performance for the methanol oxidation reaction (MOR). Their mass and electrochemically active surface area (ECSA)-normalized current densities are approximately 3.9 and 4.6 times higher than those of commercial Pt/C catalysts, respectively. The oxidation current densities of the Au90@Pt10 NPs are approximately 1.8 times higher than those of commercial Pt/C catalysts after 4000 s of continuous measurement because the small Pt NPs grown on the surface of the Au90@Pt10 NPs were effectively stabilized by the Au metal support. This approach may be a facile method for the synthesis of self-supported bimetallic nanostructures, which is of great significance for the development of high performance electrocatalysts and sensors.

SUBMITTER: Tan C 

PROVIDER: S-EPMC5524951 | biostudies-literature |

REPOSITORIES: biostudies-literature

Similar Datasets

| S-EPMC8979267 | biostudies-literature
| S-EPMC6351680 | biostudies-other
| S-EPMC6843713 | biostudies-literature
| S-EPMC10024750 | biostudies-literature
| S-EPMC8173555 | biostudies-literature
| S-EPMC4045645 | biostudies-literature
| S-EPMC10563835 | biostudies-literature
| S-EPMC4800310 | biostudies-literature
| S-EPMC3948072 | biostudies-literature
| S-EPMC9055174 | biostudies-literature