ABSTRACT: Human cryptococcosis can occur as a primary or opportunistic infection and develops as an acute, subacute, or chronic systemic infection involving different organs of the host. Given the limited therapeutic options and the occasional resistance to fluconazole, there is a need to develop novel drugs for the treatment of cryptococcosis. In this report, we describe promising thiazole compounds 1, 2, 3, and 4 and explore their possible modes of action against Cryptococcus To this end, we show evidence of interference in the Cryptococcus antioxidant system. The tested compounds exhibited MICs ranging from 0.25 to 2 ?g/ml against Cryptococcus neoformans strains H99 and KN99?. Interestingly, the knockout strains for Cu oxidase and sarcosine oxidase were resistant to thiazoles. MIC values of thiazole compounds 1, 2, and 4 against these mutants were higher than for the parental strain. After the treatment of C. neoformans ATCC 24067 (or C. deneoformans) and C. gattii strain L27/01 (or C. deuterogattii) with thiazoles, we verified an increase in intracellular reactive oxygen species (ROS). Also, we verified the synergistic interactions among thiazoles and menadione, which generates superoxides, with fractional inhibitory concentrations (FICs) equal to 0.1874, 0.3024, 0.25, and 0.25 for the thiazole compounds 1, 2, 3, and 4, respectively. In addition, thiazoles exhibited antagonistic interactions with parasulphonatephenyl porphyrinato ferrate III (FeTPPS). Thus, in this work, we showed that the action of these thiazoles is related to an interference with the antioxidant system. These findings suggest that oxidative stress may be primarily related to the accumulation of superoxide radicals.