A role for the anaphase-promoting complex inhibitor Emi2/XErp1, a homolog of early mitotic inhibitor 1, in cytostatic factor arrest of Xenopus eggs.
Ontology highlight
ABSTRACT: Unfertilized vertebrate eggs are arrested in metaphase of meiosis II with high cyclin B/Cdc2 activity to prevent parthenogenesis. Until fertilization, exit from metaphase is blocked by an activity called cytostatic factor (CSF), which stabilizes cyclin B by inhibiting the anaphase-promoting complex (APC) ubiquitin ligase. The APC inhibitor early mitotic inhibitor 1 (Emi1) was recently found to be required for maintenance of CSF arrest. We show here that exogenous Emi1 is unstable in CSF-arrested Xenopus eggs and is destroyed by the SCF(betaTrCP) ubiquitin ligase, suggesting that endogenous Emi1, an apparent 44-kDa protein, requires a stabilizing factor. However, anti-Emi1 antibodies crossreact with native Emi2/Erp1/FBXO43, a homolog of Emi1 and conserved APC inhibitor. Emi2 is stable in CSF-arrested eggs, is sufficient to prevent CSF release, and is rapidly degraded in a Polo-like kinase 1-dependent manner in response to calcium-mediated egg activation. These results identify Emi2 as a candidate CSF maintenance protein.
SUBMITTER: Tung JJ
PROVIDER: S-EPMC552977 | biostudies-literature |
REPOSITORIES: biostudies-literature
ACCESS DATA