Unknown

Dataset Information

0

Intracellular Angiotensin-II Interacts With Nuclear Angiotensin Receptors in Cardiac Fibroblasts and Regulates RNA Synthesis, Cell Proliferation, and Collagen Secretion.


ABSTRACT: BACKGROUND:Cardiac fibroblasts play important functional and pathophysiological roles. Intracellular ("intracrine") angiotensin-II (Ang-II) signaling regulates intercellular communication, excitability, and gene expression in cardiomyocytes; however, the existence and role of intracrine Ang-II signaling in cardiac fibroblasts is unstudied. Here, we evaluated the localization of Ang-II receptors on atrial fibroblast nuclei and associated intracrine effects of potential functional significance. METHODS AND RESULTS:Immunoblots of subcellular protein-fractions from isolated canine atrial fibroblasts indicated the presence of nuclear Ang-II type 1 receptors (AT1Rs) and Ang-II type 2 receptors (AT2Rs). Fluorescein isothiocyanate-Ang-II binding displaceable by AT1R- and AT2R-blockers was present on isolated fibroblast nuclei. G-protein subunits, including G?q/11, G?i/3, and G?, were observed in purified fibroblast nuclear fractions by immunoblotting and intact-fibroblast nuclei by confocal immunocytofluorescence microscopy. Nuclear AT1Rs and AT2Rs regulated de novo RNA synthesis ([?32P]UTP incorporation) via IP3R- and NO-dependent pathways, respectively. In intact cultured fibroblasts, intracellular Ang-II release by photolysis of a membrane-permeable caged Ang-II analog led to IP3R-dependent nucleoplasmic Ca2+-liberation, with IP3R3 being the predominant nuclear isoform. Intracellular Ang-II regulated fibroblast proliferation ([3H]thymidine incorporation), collagen-1A1 mRNA-expression, and collagen secretion. Intracellular Ang-II and nuclear AT1R protein levels were significantly increased in a heart failure model in which atrial fibrosis underlies atrial fibrillation. CONCLUSIONS:Fibroblast nuclei possess AT1R and AT2R binding sites that are coupled to intranuclear Ca2+-mobilization and NO liberation, respectively. Intracellular Ang-II signaling regulates fibroblast proliferation, collagen gene expression, and collagen secretion. Heart failure upregulates Ang-II intracrine signaling-components in atrial fibroblasts. These results show for the first time that nuclear angiotensin-II receptor activation and intracrine Ang-II signaling control fibroblast function and may have pathophysiological significance.

SUBMITTER: Tadevosyan A 

PROVIDER: S-EPMC5533010 | biostudies-literature | 2017 Apr

REPOSITORIES: biostudies-literature

altmetric image

Publications

Intracellular Angiotensin-II Interacts With Nuclear Angiotensin Receptors in Cardiac Fibroblasts and Regulates RNA Synthesis, Cell Proliferation, and Collagen Secretion.

Tadevosyan Artavazd A   Xiao Jiening J   Surinkaew Sirirat S   Naud Patrice P   Merlen Clémence C   Harada Masahide M   Qi Xiaoyan X   Chatenet David D   Fournier Alain A   Allen Bruce G BG   Nattel Stanley S  

Journal of the American Heart Association 20170405 4


<h4>Background</h4>Cardiac fibroblasts play important functional and pathophysiological roles. Intracellular ("intracrine") angiotensin-II (Ang-II) signaling regulates intercellular communication, excitability, and gene expression in cardiomyocytes; however, the existence and role of intracrine Ang-II signaling in cardiac fibroblasts is unstudied. Here, we evaluated the localization of Ang-II receptors on atrial fibroblast nuclei and associated intracrine effects of potential functional signific  ...[more]

Similar Datasets

| S-EPMC1572936 | biostudies-literature