Unknown

Dataset Information

0

Size-controlled self-assembly of superparamagnetic polymersomes.


ABSTRACT: We report the size-controlled self-assembly of polymersomes through the cooperative self-assembly of nanoparticles and amphiphilic polymers. Polymersomes densely packed with magnetic nanoparticles in the polymersome membrane (magneto-polymersome) were fabricated with a series of different sized iron oxide nanoparticles. The distribution of nanoparticles in a polymersome membrane was size-dependent; while small nanoparticles were dispersed in a polymer bilayer, large particles formed a well-ordered superstructure at the interface between the inner and outer layer of a bilayer membrane. The yield of magneto-polymersomes increased with increasing the diameter of incorporated nanoparticles. Moreover, the size of the polymersomes was effectively controlled by varying the size of incorporated nanoparticles. This size-dependent self-assembly was attributed to the polymer chain entropy effect and the size-dependent localization of nanoparticles in polymersome bilayers. The transverse relaxation rates (r2) of magneto-polymersomes increased with increasing the nanoparticle diameter and decreasing the size of polymersomes, reaching 555 ± 24 s(-1) mM(-1) for 241 ± 16 nm polymersomes, which is the highest value reported to date for superparamagnetic iron oxide nanoparticles.

SUBMITTER: Hickey RJ 

PROVIDER: S-EPMC5540317 | biostudies-literature | 2014 Jan

REPOSITORIES: biostudies-literature

altmetric image

Publications

Size-controlled self-assembly of superparamagnetic polymersomes.

Hickey Robert J RJ   Koski Jason J   Meng Xin X   Riggleman Robert A RA   Zhang Peijun P   Park So-Jung SJ  

ACS nano 20140102 1


We report the size-controlled self-assembly of polymersomes through the cooperative self-assembly of nanoparticles and amphiphilic polymers. Polymersomes densely packed with magnetic nanoparticles in the polymersome membrane (magneto-polymersome) were fabricated with a series of different sized iron oxide nanoparticles. The distribution of nanoparticles in a polymersome membrane was size-dependent; while small nanoparticles were dispersed in a polymer bilayer, large particles formed a well-order  ...[more]

Similar Datasets

| S-EPMC5456531 | biostudies-literature
| S-EPMC5021307 | biostudies-literature
| S-EPMC5007325 | biostudies-literature
| S-EPMC3594096 | biostudies-literature
| S-EPMC7081293 | biostudies-literature
| S-EPMC6586877 | biostudies-other
| S-EPMC6184576 | biostudies-literature
| S-EPMC6728097 | biostudies-literature
| S-EPMC3784943 | biostudies-literature
| S-EPMC4580238 | biostudies-literature