Global survey of mRNA levels and decay rates of Chlamydia trachomatis trachoma and lymphogranuloma venereum biovars.
Ontology highlight
ABSTRACT: Interpreting the intricate bacterial transcriptomics implies understanding the dynamic relationship established between de novo transcription and the degradation of transcripts. Here, we performed a comparative overview of gene expression levels and mRNA decay rates for different-biovar (trachoma and lymphogranuloma venereum) strains of the obligate intracellular bacterium Chlamydia trachomatis. By using RNA-sequencing to measure gene expression levels at mid developmental stage and mRNA decay rates upon rifampicin-based transcription blockage, we observed that: i) 60-70% of the top-50 expressed genes encode proteins with unknown function and proteins involved in "Translation, ribosomal structure and biogenesis" for all strains; ii) the expression ranking by genes' functional categories was in general concordant among different-biovar strains; iii) the median of the half-life time (t1/2) values of transcripts were 15-17 min, indicating that the degree of transcripts' stability seems to correlate with the bacterial intracellular life-style, as these values are considerably higher than the ones observed in other studies for facultative intracellular and free-living bacteria; iv) transcript decay rates were highly heterogeneous within each C. trachomatis strain and did not correlate with steady-state expression levels; v) only at very few instances (essentially at gene functional category level) was possible to unveil dissimilarities potentially underlying phenotypic differences between biovars. In summary, the unveiled transcriptomic scenario, marked by a general lack of correlation between transcript production and degradation and a huge inter-transcript heterogeneity in decay rates, likely reflects the challenges underlying the unique biphasic developmental cycle of C. trachomatis and its intricate interactions with the human host, which probably exacerbate the complexity of the bacterial transcription regulation.
SUBMITTER: Ferreira R
PROVIDER: S-EPMC5541142 | biostudies-literature | 2017 Jul
REPOSITORIES: biostudies-literature
ACCESS DATA