Unknown

Dataset Information

0

Fabrication of parabolic Si nanostructures by nanosphere lithography and its application for solar cells.


ABSTRACT: We demonstrated fabrication of a parabola shaped Si nanostructures of various periods by combined approach of nanosphere lithography and a single step CF4/O2 reactive ion etch (RIE) process. Silica nanosphere monolayers in a hexagonal array were well deposited by a solvent controlled spin coating technique based on binary organic solvents. We showed numerically that a parabolic Si nanostructure of an optimal period among various-shaped nanostructures overcoated with a dielectric layer of a 70?nm thickness provide the most effective antireflection. As the simulation results as a design guide, we fabricated the parabolic Si nanostructures of a 520?nm period and a 300?nm height exhibiting the lowest weighted reflectance of 2.75%. With incorporation of such parabolic Si nanostructures, a damage removal process for 20?sec and SiNx antireflection coating of a 70?nm thickness, the efficiency of solar cells increased to 17.2% while that of the planar cells without the nanostructures exhibited 16.2%. The efficiency enhancement of the cell with the Si nanostructures was attributed to the improved photocurrents arising from the broad spectral antireflection which was confirmed by the external quantum efficiency (EQE) measurements.

SUBMITTER: Cheon SE 

PROVIDER: S-EPMC5544770 | biostudies-literature | 2017 Aug

REPOSITORIES: biostudies-literature

altmetric image

Publications

Fabrication of parabolic Si nanostructures by nanosphere lithography and its application for solar cells.

Cheon See-Eun SE   Lee Hyeon-Seung HS   Choi Jihye J   Jeong Ah Reum AR   Lee Taek Sung TS   Jeong Doo Seok DS   Lee Kyeong-Seok KS   Lee Wook-Seong WS   Kim Won Mok WM   Lee Heon H   Kim Inho I  

Scientific reports 20170804 1


We demonstrated fabrication of a parabola shaped Si nanostructures of various periods by combined approach of nanosphere lithography and a single step CF<sub>4</sub>/O<sub>2</sub> reactive ion etch (RIE) process. Silica nanosphere monolayers in a hexagonal array were well deposited by a solvent controlled spin coating technique based on binary organic solvents. We showed numerically that a parabolic Si nanostructure of an optimal period among various-shaped nanostructures overcoated with a diele  ...[more]

Similar Datasets

| S-EPMC10496899 | biostudies-literature
| S-EPMC6956078 | biostudies-literature
| S-EPMC3674430 | biostudies-literature
| S-EPMC6515224 | biostudies-literature
| S-EPMC6062194 | biostudies-literature
| S-EPMC7911543 | biostudies-literature
| S-EPMC9501340 | biostudies-literature
| S-EPMC8347201 | biostudies-literature
| S-EPMC5532261 | biostudies-literature
| S-EPMC7045309 | biostudies-literature