Unknown

Dataset Information

0

Clinical and molecular consequences of disease-associated de novo mutations in SATB2.


ABSTRACT: To characterize features associated with de novo mutations affecting SATB2 function in individuals ascertained on the basis of intellectual disability.Twenty previously unreported individuals with 19 different SATB2 mutations (11 loss-of-function and 8 missense variants) were studied. Fibroblasts were used to measure mutant protein production. Subcellular localization and mobility of wild-type and mutant SATB2 were assessed using fluorescently tagged protein.Recurrent clinical features included neurodevelopmental impairment (19/19), absent/near absent speech (16/19), normal somatic growth (17/19), cleft palate (9/19), drooling (12/19), and dental anomalies (8/19). Six of eight missense variants clustered in the first CUT domain. Sibling recurrence due to gonadal mosaicism was seen in one family. A nonsense mutation in the last exon resulted in production of a truncated protein retaining all three DNA-binding domains. SATB2 nuclear mobility was mutation-dependent; p.Arg389Cys in CUT1 increased mobility and both p.Gly515Ser in CUT2 and p.Gln566Lys between CUT2 and HOX reduced mobility. The clinical features in individuals with missense variants were indistinguishable from those with loss of function.SATB2 haploinsufficiency is a common cause of syndromic intellectual disability. When mutant SATB2 protein is produced, the protein appears functionally inactive with a disrupted pattern of chromatin or matrix association.Genet Med advance online publication 02 February 2017.

SUBMITTER: Bengani H 

PROVIDER: S-EPMC5548934 | biostudies-literature | 2017 Aug

REPOSITORIES: biostudies-literature

altmetric image

Publications

Clinical and molecular consequences of disease-associated de novo mutations in SATB2.

Bengani Hemant H   Handley Mark M   Alvi Mohsan M   Ibitoye Rita R   Lees Melissa M   Lynch Sally Ann SA   Lynch Sally Ann SA   Lam Wayne W   Fannemel Madeleine M   Nordgren Ann A   Malmgren H H   Kvarnung M M   Mehta Sarju S   McKee Shane S   Whiteford Margo M   Stewart Fiona F   Connell Fiona F   Clayton-Smith Jill J   Mansour Sahar S   Mohammed Shehla S   Fryer Alan A   Morton Jenny J   Grozeva Detelina D   Asam Tara T   Moore David D   Sifrim Alejandro A   McRae Jeremy J   Hurles Matthew E ME   Firth Helen V HV   Raymond F Lucy FL   Kini Usha U   Kini Usha U   Nellåker Christoffer C   Ddd Study   FitzPatrick David R DR   FitzPatrick David R DR  

Genetics in medicine : official journal of the American College of Medical Genetics 20170202 8


<h4>Purpose</h4>To characterize features associated with de novo mutations affecting SATB2 function in individuals ascertained on the basis of intellectual disability.<h4>Methods</h4>Twenty previously unreported individuals with 19 different SATB2 mutations (11 loss-of-function and 8 missense variants) were studied. Fibroblasts were used to measure mutant protein production. Subcellular localization and mobility of wild-type and mutant SATB2 were assessed using fluorescently tagged protein.<h4>R  ...[more]

Similar Datasets

| S-EPMC5226060 | biostudies-literature
| S-EPMC1461551 | biostudies-other
| S-EPMC6070129 | biostudies-literature
2016-09-29 | E-MTAB-4760 | biostudies-arrayexpress
| S-EPMC5648796 | biostudies-literature
| S-EPMC5995194 | biostudies-literature
| S-EPMC7820634 | biostudies-literature
| S-EPMC5270254 | biostudies-literature
| S-EPMC6143347 | biostudies-literature
| S-EPMC4850885 | biostudies-literature